Chémobiologie
Accès gratuit
Numéro
Med Sci (Paris)
Volume 31, Numéro 1, Janvier 2015
Chémobiologie
Page(s) 93 - 97
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20153101018
Publié en ligne 6 février 2015
  1. Schreiber SL. Target-oriented and diversity-oriented organic synthesis in drug discovery. Science 2000 ; 287 : 1964–1969. [CrossRef] [PubMed] [Google Scholar]
  2. Burke MD, Schreiber SL. A planning strategy for diversity-oriented synthesis. Angew Chem Int Ed 2004 ; 43 : 46–58. [CrossRef] [Google Scholar]
  3. Peuchmaur M, Wong YS. Expanding the chemical space in practice: diversity-oriented synthesis. Comb Chem High Throughput Screen 2008 ; 11 : 587–601. [CrossRef] [PubMed] [Google Scholar]
  4. Wan J-P, Liu Y. Recent advances in new multicomponent synthesis of structurally diversified 1,4-dihydropyridines. RSC Adv 2012 ; 2 : 9763–9777. [CrossRef] [Google Scholar]
  5. Edraki N, Mehdipour AR, Khoshneviszadeh M, Miri R. Dihydropyridines: evaluation of their current and future pharmacological applications. Drug Discov Today 2009 ; 14 : 1058–1066. [CrossRef] [PubMed] [Google Scholar]
  6. Clemons PA, Bodycombe NE, Carrinski HA, et al. Small molecules of different origins have distinct distributions of structural complexity that correlate with protein-binding profiles. Proc Natl Acad Sci USA 2010 ; 107 : 18787–18792. [CrossRef] [Google Scholar]
  7. Kumagai N, Muncipinto G, Schreiber SL. Short synthesis of skeletally and stereochemically diverse small molecules by coupling Petasis condensation reactions to cyclization reactions. Angew Chem Int Ed 2006 ; 45 : 3635–3638. [CrossRef] [Google Scholar]
  8. Robbins D, Newton AF, Gignoux C, et al. Synthesis of natural-product-like scaffolds in unprecedented efficiency via a 12-fold branching pathway. Chem Sci 2011 ; 2 : 2232–2235. [CrossRef] [Google Scholar]
  9. Muncipinto G, Kaya T, Wilson JA, et al. Expanding stereochemical and skeletal diversity using Petasis reactions and 1,3-dipolar cycloadditions. Org Lett 2010 ; 12 : 5230–5233. [CrossRef] [PubMed] [Google Scholar]
  10. Sauer WHB, Schwarz MK. Molecular shape diversity of combinatorial libraries: a prerequisite for broad bioactivity. J Chem Inf Comput Sci 2003 ; 43 : 987–1003. [CrossRef] [PubMed] [Google Scholar]
  11. Kopp F, Stratton CF, Akella LB, Tan DS. A diversity-oriented synthesis approach to macrocycles via oxidative ring expansion. Nat Chem Biol 2012 ; 8 : 358–365. [CrossRef] [PubMed] [Google Scholar]
  12. Marcaurelle LA, Comer E, Dandapani S, et al. An aldol-based build/couple/pair strategy for the synthesis of medium- and large-sized rings: discovery of macrocyclic histone deacetylase inhibitors. J Am Chem Soc 2010 ; 132 : 16962–16976. [CrossRef] [PubMed] [Google Scholar]
  13. Wender PA, Verma VA, Paxton TJ, Pillow TH. Function-oriented synthesis, step economy, and drug design. Acc Chem Res 2008 ; 41 : 40–49. [CrossRef] [PubMed] [Google Scholar]
  14. Traore M, Mietton F, Maubon D, et al. Flexible synthesis and evaluation of diverse anti-apicomplexa cyclic peptides. J Org Chem 2013 ; 78 : 3655–3675. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.