Free Access
Med Sci (Paris)
Volume 31, Number 1, Janvier 2015
Page(s) 75 - 83
Section M/S Revues
Published online 06 February 2015
  1. D’Adamio F, Zollo O, Moraca R, et al. A new dexamethasone-induced gene of the leucine zipper family protects T lymphocytes from TCR/CD3-activated cell death. Immunity 1997 ; 7 : 803–812. [CrossRef] [PubMed] [Google Scholar]
  2. Shibanuma M, Kuroki T, Nose K Isolation of a gene encoding a putative leucine zipper structure that is induced by transforming growth factor beta 1 and other growth factors. J Biol Chem 1992 ; 267 : 10219–10224. [PubMed] [Google Scholar]
  3. Fiol DF, Mak SK, Kultz D Specific TSC22 domain transcripts are hypertonically induced and alternatively spliced to protect mouse kidney cells during osmotic stress. FEBS J 2007 ; 274 : 109–124. [CrossRef] [PubMed] [Google Scholar]
  4. Bruscoli S, Donato V, Velardi E, et al. Glucocorticoid-induced leucine zipper (GILZ) and long-gilz inhibit myogenic differentiation and mediate anti-myogenic effects of glucocorticoids. J Biol Chem 2010 ; 285 : 10385–10396. [CrossRef] [PubMed] [Google Scholar]
  5. Khoury CM, Yang Z, Li XY, et al. A TSC22-like motif defines a novel antiapoptotic protein family. FEMS Yeast Res 2008 ; 8 : 540–563. [CrossRef] [PubMed] [Google Scholar]
  6. Soundararajan R, Wang J, Melters D, Pearce D Differential activities of glucocorticoid-induced leucine zipper protein isoforms. J Biol Chem 2007 ; 282 : 36303–36313. [CrossRef] [PubMed] [Google Scholar]
  7. Kester HA, Blanchetot C, den Hertog J, et al. Transforming growth factor-beta-stimulated clone-22 is a member of a family of leucine zipper proteins that can homo- and heterodimerize and has transcriptional repressor activity. J Biol Chem 1999 ; 274 : 27439–27447. [CrossRef] [PubMed] [Google Scholar]
  8. Ayroldi E, Riccardi C. Glucocorticoid-induced leucine zipper (GILZ): a new important mediator of glucocorticoid action. Faseb J 2009 ; 23 : 3649–3658. [CrossRef] [PubMed] [Google Scholar]
  9. Gupta RA, Sarraf P, Brockman JA, et al. Peroxisome proliferator-activated receptor gamma and transforming growth factor-beta pathways inhibit intestinal epithelial cell growth by regulating levels of TSC-22. J Biol Chem 2003 ; 278 : 7431–7438. [CrossRef] [PubMed] [Google Scholar]
  10. Lee JH, Rho SB, Park SY, Chun T. Interaction between fortilin and transforming growth factor-beta stimulated clone-22 (TSC-22) prevents apoptosis via the destabilization of TSC-22. FEBS Lett 2008 ; 582 : 1210–1218. [CrossRef] [PubMed] [Google Scholar]
  11. Yan X, Zhang J, Pan L, et al. TSC-22 promotes transforming growth factor beta-mediated cardiac myofibroblast differentiation by antagonizing Smad7 activity. Mol Cell Biol 2011 ; 31 : 3700–3709. [CrossRef] [PubMed] [Google Scholar]
  12. Mittelstadt PR, Ashwell JD. Inhibition of AP-1 by the glucocorticoid-inducible protein GILZ. J Biol Chem 2001 ; 276 : 29603–29610. [CrossRef] [PubMed] [Google Scholar]
  13. Bereshchenko O, Coppo M, Bruscoli S, et al. GILZ promotes production of peripherally induced Treg cells and mediates the crosstalk between glucocorticoids and TGF-beta signaling. Cell Rep 2014 ; 7 : 464–475. [CrossRef] [PubMed] [Google Scholar]
  14. Nakamura M, Kitaura J, Enomoto Y, et al. Transforming growth factor-beta-stimulated clone-22 is a negative-feedback regulator of Ras/Raf signaling: Implications for tumorigenesis. Cancer Sci 2012 ; 103 : 26–33. [CrossRef] [PubMed] [Google Scholar]
  15. Hino S, Kawamata H, Omotehara F, et al. Cytoplasmic TSC-22 (transforming growth factor-beta-stimulated clone-22) markedly enhances the radiation sensitivity of salivary gland cancer cells. Biochem Biophys Res Commun 2002 ; 292 : 957–963. [CrossRef] [PubMed] [Google Scholar]
  16. Latre de Late P, Pepin A, Assaf-Vandecasteele H, et al. Glucocorticoid-induced leucine zipper (GILZ) promotes the nuclear exclusion of FOXO3 in a Crm1-dependent manner. J Biol Chem 2010 ; 285 : 5594–5605. [CrossRef] [PubMed] [Google Scholar]
  17. Ohta S, Shimekake Y, Nagata K. Molecular cloning and characterization of a transcription factor for the C-type natriuretic peptide gene promoter. Eur J Biochem 1996 ; 242 : 460–466. [CrossRef] [PubMed] [Google Scholar]
  18. Asselin-Labat ML, Biola-Vidamment A, Kerbrat S, et al. FoxO3 mediates antagonistic effects of glucocorticoids and interleukin-2 on glucocorticoid-induced leucine zipper expression. Mol Endocrinol 2005 ; 19 : 1752–1764. [CrossRef] [PubMed] [Google Scholar]
  19. Cohen N, Mouly E, Hamdi H, et al. GILZ expression in human dendritic cells redirects their maturation and prevents antigen-specific T lymphocyte response. Blood 2006 ; 107 : 2037–2044. [CrossRef] [PubMed] [Google Scholar]
  20. Godot V, Garcia G, Capel F, et al. Dexamethasone and IL-10 stimulate glucocorticoid-induced leucine zipper synthesis by human mast cells. Allergy 2006 ; 61 : 886–890. [CrossRef] [PubMed] [Google Scholar]
  21. Berrebi D, Bruscoli S, Cohen N, et al. Synthesis of glucocorticoid-induced leucine zipper (GILZ) by macrophages: an anti-inflammatory and immunosuppressive mechanism shared by glucocorticoids and IL-10. Blood 2003 ; 101 : 729–738. [CrossRef] [PubMed] [Google Scholar]
  22. Hoppstadter J, Diesel B, Eifler LK, et al. Glucocorticoid-induced leucine zipper is downregulated in human alveolar macrophages upon Toll-like receptor activation. Eur J Immunol 2012 ; 42 : 1282–1293. [CrossRef] [PubMed] [Google Scholar]
  23. Beaulieu E, Ngo D, Santos L, et al. Glucocorticoid-induced leucine zipper is an endogenous antiinflammatory mediator in arthritis. Arthritis Rheum 2010 ; 62 : 2651–2661. [CrossRef] [PubMed] [Google Scholar]
  24. Wang Y, Ma YY, Song XL, et al. Upregulations of glucocorticoid-induced leucine zipper by hypoxia and glucocorticoid inhibit proinflammatory cytokines under hypoxic conditions in macrophages. J Immunol 2012 ; 188 : 222–229. [CrossRef] [PubMed] [Google Scholar]
  25. Asselin-Labat ML, David M, Biola-Vidamment A, et al. GILZ, a new target for the transcription factor FoxO3, protects T lymphocytes from interleukin-2 withdrawal-induced apoptosis. Blood 2004 ; 104 : 215–223. [CrossRef] [PubMed] [Google Scholar]
  26. Uchida D, Omotehara F, Nakashiro K, et al. Posttranscriptional regulation of TSC-22 (TGF-beta-stimulated clone-22) gene by TGF-beta 1. Biochem Biophys Res Commun 2003 ; 305 : 846–854. [CrossRef] [PubMed] [Google Scholar]
  27. Kato M, Wang L, Putta S, et al. Post-transcriptional up-regulation of Tsc-22 by Ybx1, a target of miR-216a, mediates TGF-beta-induced collagen expression in kidney cells. J Biol Chem 2010 ; 285 : 34004–34015. [CrossRef] [PubMed] [Google Scholar]
  28. Yu J, Ershler M, Yu L, et al. TSC-22 contributes to hematopoietic precursor cell proliferation and repopulation and is epigenetically silenced in large granular lymphocyte leukemia. Blood 2009 ; 113 : 5558–5567. [CrossRef] [PubMed] [Google Scholar]
  29. Nakashiro K, Kawamata H, Hino S, et al. Down-regulation of TSC-22 (transforming growth factor beta-stimulated clone 22) markedly enhances the growth of a human salivary gland cancer cell line in vitro and in vivo. Cancer Res 1998 ; 58 : 549–555. [PubMed] [Google Scholar]
  30. Joha S, Nugues AL, Hetuin D, et al. GILZ inhibits the mTORC2/AKT pathway in BCR-ABL+ cells. Oncogene 2011 ; 31 : 1419–1430. [CrossRef] [PubMed] [Google Scholar]
  31. Ohta S, Yanagihara K, Nagata K. Mechanism of apoptotic cell death of human gastric carcinoma cells mediated by transforming growth factor beta. Biochem J 1997 ; 324 : 777–782. [PubMed] [Google Scholar]
  32. Redjimi N, Gaudin F, Touboul C, et al. Identification of glucocorticoid-induced leucine zipper as a key regulator of tumor cell proliferation in epithelial ovarian cancer. Mol Cancer 2009 ; 8 : 83. [CrossRef] [PubMed] [Google Scholar]
  33. Esposito E, Bruscoli S, Mazzon E, et al. Glucocorticoid-induced leucine zipper (GILZ) over-expression in T lymphocytes inhibits inflammation and tissue damage in spinal cord injury. Neurotherapeutics 2011 ; 9 : 210–225. [CrossRef] [Google Scholar]
  34. Srinivasan M, Janardhanam S. Novel p65 binding glucocorticoid-induced leucine zipper peptide suppresses experimental autoimmune encephalomyelitis. J Biol Chem 2011 ; 286 : 44799–44810. [CrossRef] [PubMed] [Google Scholar]
  35. Hamdi H, Godot V, Maillot MC, et al. Induction of antigen-specific regulatory T lymphocytes by human dendritic cells expressing the glucocorticoid-induced leucine zipper. Blood 2007 ; 110 : 211–219. [CrossRef] [PubMed] [Google Scholar]
  36. Karaki S, Garcia G, Tcherakian C, et al. Enhanced glucocorticoid-induced leucine zipper in dendritic cells induces allergen-specific regulatory CD4+ T-cells in respiratory allergies. Allergy 2014 ; 69 : 624–631. [CrossRef] [PubMed] [Google Scholar]
  37. Suarez PE, Rodriguez EG, Soundararajan R, et al. The glucocorticoid-induced leucine zipper (gilz/Tsc22d3-2) gene locus plays a crucial role in male fertility. Mol Endocrinol 2012 ; 26 : 1000–1013. [CrossRef] [PubMed] [Google Scholar]
  38. Bruscoli S, Velardi E, Di Sante M, et al. Long glucocorticoid-induced leucine zipper (L-GILZ) protein interacts with ras protein pathway and contributes to spermatogenesis control. J Biol Chem 2012 ; 287 : 1242–1251. [CrossRef] [PubMed] [Google Scholar]
  39. Venanzi A, Di Sante M, Bruscoli S, et al. Recombinant long-glucocorticoid-induced leucine zipper (L-GILZ) protein restores the control of proliferation in gilz KO spermatogonia. Eur J Pharm Sci 2014; 63C : 22–28. [CrossRef] [Google Scholar]
  40. Cabon L, Martinez-Torres AC, Susin SA. La mort cellulaire programmée ne manque pas de vocabulaire. Med Sci (Paris) 2013 ; 29 : 1117–1124. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.