Free Access
Issue
Med Sci (Paris)
Volume 31, Number 1, Janvier 2015
Page(s) 68 - 74
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20153101015
Published online 06 February 2015
  1. Solez K, Colvin RB, Racusen LC. et al. Banff 07 classification of renal allograft pathology: updates and future directions. Am J Transplant 2008 ; 8 : 753–760. [CrossRef] [PubMed] [Google Scholar]
  2. Halloran PF, Melk A, Barth C Rethinking chronic allograft nephropathy: the concept of accelerated senescence. J Am Soc Nephrol 1999 ; 10 : 167–181. [PubMed] [Google Scholar]
  3. Hinz B. The myofibroblast: paradigm for a mechanically active cell. J Biomech 2010 ; 3 : 146–155. [CrossRef] [Google Scholar]
  4. Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol 2008 ; 214 : 199–210. [CrossRef] [PubMed] [Google Scholar]
  5. Strutz FM. EMT and proteinuria as progression factors. Kidney Int 2009 ; 75 : 475–481. [CrossRef] [PubMed] [Google Scholar]
  6. Bedi S, Vidyasagar A, Djamali A. Epithelial-to-mesenchymal transition and chronic allograft tubule interstitial fibrosis. Transplant Rev 2008 ; 22 : 1–5. [CrossRef] [PubMed] [Google Scholar]
  7. Zeisberg M, Kalluri R. The role of epithelial-to-mesenchymal transition in renal fibrosis. J Mol Med 2004 ; 82 : 175–181. [CrossRef] [PubMed] [Google Scholar]
  8. Ivanova L, Butt MJ, Matsell DG. Mesenchymal transition in kidney collecting duct epithelial cells. Am J Physiol Renal Physiol 2008 ; 294 : F1238–F1248. [CrossRef] [PubMed] [Google Scholar]
  9. Smith JP, Pozzi A, Dhawan P. et al. Soluble HB-EGF induces epithelial-to-mesenchymal transition in inner medullary collecting duct cells by upregulating snail-2. Am J Physiol Renal Physiol 2009 ; 296 : F957–F965. [CrossRef] [PubMed] [Google Scholar]
  10. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest 2009 ; 119 : 1420–1428. [CrossRef] [PubMed] [Google Scholar]
  11. Iwano M, Plieth D, Danoff TM. et al. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest 2002 ; 110 : 341–350. [CrossRef] [PubMed] [Google Scholar]
  12. Venkov C, Link A, Jennings J. et al. A proximal activator of transcription in epithelial-mesenchymal transition. J Clin Invest 2007 ; 117 : 482–491. [CrossRef] [PubMed] [Google Scholar]
  13. Qi W, Twigg S, Chen X. et al. Integrated actions of transforming growth factor-β1 and connective tissue growth factor in renal fibrosis. Am J Physiol Renal Physiol 2005 ; 288 : 800–809. [CrossRef] [Google Scholar]
  14. Koesters R, Kaissling B, Lehir M. et al. Tubular overexpression of transforming growth factor-β1 induces autophagy and fibrosis but not mesenchymal transition of renal epithelial cells. Am J Pathol 2010 ; 177 : 632–643. [CrossRef] [PubMed] [Google Scholar]
  15. Humphreys BD, Lin SL, Kobayashi A. et al. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol 2010 ; 176 : 85–97. [CrossRef] [PubMed] [Google Scholar]
  16. Li L, Zepeda-Orozco D, Black R, Lin F. Autophagy is a component of epithelial cell fate in obstructive uropathy. Am J Pathol 2010 ; 176 : 1767–1778. [CrossRef] [PubMed] [Google Scholar]
  17. Cook T.H.. The origin of renal fibroblasts and progression of kidney disease. Am J Pathol 2010 ; 176 : 22–24. [CrossRef] [PubMed] [Google Scholar]
  18. Pallet N, Anglicheau D. Transition épithélio-mésenchymateuse : aspects fondamentaux. Actualités Néphrologiques 2008 ; 87–98. [Google Scholar]
  19. Inoue T, Okada H, Takenaka T. et al. A case report suggesting the occurrence of epithelial-mesenchymal transition in obstructive nephropathy. Clin Exp Nephrol 2009 ; 13 : 385–388. [CrossRef] [PubMed] [Google Scholar]
  20. Hertig A, Anglicheau D, Verine J. et al. Early epithelial phenotypic changes predict graft fibrosis. J Am Soc Nephrol 2008 ; 19 : 1584–1589. [CrossRef] [PubMed] [Google Scholar]
  21. Kim M, Maeng Y, Sung WJ. et al. The differential expression of TGF-β1, ILK and wnt signaling inducing epithelial to mesenchymal transition in human renal fibrogenesis: an immunohistochemical study. Int J Clin Exp Pathol 2013 ; 9 : 1747–1758. [Google Scholar]
  22. Del Prete D, Ceol M, Anglani F. et al. Early activation of fibrogenesis in transplanted kidneys: a study on serial renal biopsies. Exp Mol Pathol 2009 ; 87 : 141–145. [CrossRef] [PubMed] [Google Scholar]
  23. Schwarz A, Mengel M, Gwinner W. et al. Protocol biopsy program after renal transplantation: structure and first results. Transplant Proc 2002 ; 34 : 2238–2239. [CrossRef] [PubMed] [Google Scholar]
  24. Hertig A, Xu-Dubois YC, Rondeau E. Transition épithélio-mésenchymateuse : un marqueur utile en transplantation rénale. Actualités Néphrologiques 2008 ; 99–111. [Google Scholar]
  25. Vongwiwatana A, Tasanarong A, Rayner DC. et al. Epithelial to mesenchymal transition during late deterioration of human kidney transplants: the role of tubular cells in fibrogenesis. Am J Transplant 2005 ; 5 : 1367–1374. [CrossRef] [PubMed] [Google Scholar]
  26. Hertig A, Verine J, Mougenot B. et al. Risk factors for early epithelial to mesenchymal transition in renal grafts. Am J Transplant 2006 ; 6 : 2937–2946. [CrossRef] [PubMed] [Google Scholar]
  27. Rastaldi MP, Ferrario F, Giardino L. Epithelial-mesenchymal transition of tubular epithelial cells in human renal biopsies. Kidney Int 2002 ; 62 : 137–146. [CrossRef] [PubMed] [Google Scholar]
  28. Galichon P, Hertig A. Epithelial to mesenchymal transition as a biomarker in renal fibrosis: are we ready for the bedside?. Fibrog Tis Rep 2011 ; 4 : 11. [CrossRef] [Google Scholar]
  29. Diaz R, Kim JW, Hui J. et al. Evidence for the epithelial to mesenchymal transition in biliary atresia fibrosis. Hum Pathol 2008 ; 39 : 102–115. [CrossRef] [PubMed] [Google Scholar]
  30. Ghosh AK, Quaggin SE, Vaughan DE. Molecular basis of organ fibrosis: Potential therapeutic approaches. Exp Biol Med 2013 ; 238 : 461–481. [CrossRef] [PubMed] [Google Scholar]
  31. Huang Y, Border WA, Noble NA. Perspectives on blockade of TGF-beta 1 overexpression. Kidney Int 2006 ; 69 : 1713–1714. [CrossRef] [PubMed] [Google Scholar]
  32. Liu X, Hu H, Yin JQ. Therapeutic strategies against TGF-beta signaling pathway in hepatic fibrosis. Liver Int 2006 ; 26 : 8–22. [CrossRef] [PubMed] [Google Scholar]
  33. Yu L, Border WA, Anderson I, McCourt, et al. Combining TGF-beta inhibition and angiotensin II blockade results in enhanced antifibrotic effect. Kidney Int 2004 ; 66 : 1774–1784. [CrossRef] [PubMed] [Google Scholar]
  34. Isaka Y, Tsujie M, Ando Y. et al. Transforming growth factor-beta 1 antisense oligodeoxynucleotides block interstitial fibrosis in unilateral ureteral obstruction. Kidney Int 2000 ; 58 : 1885–1892. [CrossRef] [PubMed] [Google Scholar]
  35. Border WA, Noble NA, Yamamoto T. et al. Natural inhibitor of transforming growth factor-beta protects against scarring in experimental kidney disease. Nature 1992 ; 360 : 361–364. [CrossRef] [PubMed] [Google Scholar]
  36. Lan HY, Mu W, Tomita N. et al. Inhibition of renal fibrosis by gene transfer of inducible Smad7 using ultrasound-microbubble system in rat UUO model. J Am Soc Nephrol 2003 ; 14 : 1535–1548. [CrossRef] [PubMed] [Google Scholar]
  37. Sharma K, Jin Y, Guo J, Ziyadeh F. Neutralization of TGF-beta by anti-TGF-beta antibody attenuates kidney hypertrophy and the enhanced extracellular matrix gene expression in STZ-induced diabetic mice. Diabetes 1996 ; 45 : 522–530. [CrossRef] [PubMed] [Google Scholar]
  38. Ziyadeh FN, Hoffman BB, Han DC. et al. Long-term prevention of renal insufficiency, excess matrix gene expression, and glomerular mesangial matrix expansion by treatment with monoclonal antitransforming growth factor-beta antibody in db/db diabetic mice. Proc Natl Acad Sci USA 2000 ; 97 : 8015–8020. [CrossRef] [Google Scholar]
  39. Sugimoto H, LeBleu VS, Bosukonda D. et al. Activin-like kinase 3 is important for kidney regeneration and reversal of fibrosis. Nat Med 2012 ; 18 : 396–405. [CrossRef] [PubMed] [Google Scholar]
  40. Klahr S.. The bone morphogenic proteins (BMPs): their role in renal fibrosis and renal function. J Nephrol 2003 ; 16 : 179–185. [PubMed] [Google Scholar]
  41. Whitman M, Rosen V, Brivanlou AH. et al. Regarding the mechanism of action of a proposed peptide agonist of the bonmorphogenetic protein: receptor activin-like kinase 3. Nat Med 2013 ; 19 : 809–810. [CrossRef] [PubMed] [Google Scholar]
  42. Yang J, Liu Y. Blockage of tubular epithelial to myofibroblast transition by hepatocyte growth factor prevents renal interstitial fibrosis. J Am Soc Nephrol 2002 ; 13 : 96–107. [PubMed] [Google Scholar]
  43. Klein J, Miravete M, Buffin-Meyer B. et al. La fibrose tubulo-interstitielle rénale. Med Sci (Paris) 2011 ; 27 : 55–61. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  44. Favreau F, Giraud S, Bon D. et al. L’ischémie-reperfusion. Med Sci (Paris) 2013 ; 29 : 183–188. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.