Accès gratuit
Numéro
Med Sci (Paris)
Volume 31, Numéro 1, Janvier 2015
Page(s) 68 - 74
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20153101015
Publié en ligne 6 février 2015
  1. Solez K, Colvin RB, Racusen LC. et al. Banff 07 classification of renal allograft pathology: updates and future directions. Am J Transplant 2008 ; 8 : 753–760. [CrossRef] [PubMed]
  2. Halloran PF, Melk A, Barth C Rethinking chronic allograft nephropathy: the concept of accelerated senescence. J Am Soc Nephrol 1999 ; 10 : 167–181. [PubMed]
  3. Hinz B. The myofibroblast: paradigm for a mechanically active cell. J Biomech 2010 ; 3 : 146–155. [CrossRef]
  4. Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol 2008 ; 214 : 199–210. [CrossRef] [PubMed]
  5. Strutz FM. EMT and proteinuria as progression factors. Kidney Int 2009 ; 75 : 475–481. [CrossRef] [PubMed]
  6. Bedi S, Vidyasagar A, Djamali A. Epithelial-to-mesenchymal transition and chronic allograft tubule interstitial fibrosis. Transplant Rev 2008 ; 22 : 1–5. [CrossRef] [PubMed]
  7. Zeisberg M, Kalluri R. The role of epithelial-to-mesenchymal transition in renal fibrosis. J Mol Med 2004 ; 82 : 175–181. [CrossRef] [PubMed]
  8. Ivanova L, Butt MJ, Matsell DG. Mesenchymal transition in kidney collecting duct epithelial cells. Am J Physiol Renal Physiol 2008 ; 294 : F1238–F1248. [CrossRef] [PubMed]
  9. Smith JP, Pozzi A, Dhawan P. et al. Soluble HB-EGF induces epithelial-to-mesenchymal transition in inner medullary collecting duct cells by upregulating snail-2. Am J Physiol Renal Physiol 2009 ; 296 : F957–F965. [CrossRef] [PubMed]
  10. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest 2009 ; 119 : 1420–1428. [CrossRef] [PubMed]
  11. Iwano M, Plieth D, Danoff TM. et al. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest 2002 ; 110 : 341–350. [CrossRef] [PubMed]
  12. Venkov C, Link A, Jennings J. et al. A proximal activator of transcription in epithelial-mesenchymal transition. J Clin Invest 2007 ; 117 : 482–491. [CrossRef] [PubMed]
  13. Qi W, Twigg S, Chen X. et al. Integrated actions of transforming growth factor-β1 and connective tissue growth factor in renal fibrosis. Am J Physiol Renal Physiol 2005 ; 288 : 800–809. [CrossRef]
  14. Koesters R, Kaissling B, Lehir M. et al. Tubular overexpression of transforming growth factor-β1 induces autophagy and fibrosis but not mesenchymal transition of renal epithelial cells. Am J Pathol 2010 ; 177 : 632–643. [CrossRef] [PubMed]
  15. Humphreys BD, Lin SL, Kobayashi A. et al. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol 2010 ; 176 : 85–97. [CrossRef] [PubMed]
  16. Li L, Zepeda-Orozco D, Black R, Lin F. Autophagy is a component of epithelial cell fate in obstructive uropathy. Am J Pathol 2010 ; 176 : 1767–1778. [CrossRef] [PubMed]
  17. Cook T.H.. The origin of renal fibroblasts and progression of kidney disease. Am J Pathol 2010 ; 176 : 22–24. [CrossRef] [PubMed]
  18. Pallet N, Anglicheau D. Transition épithélio-mésenchymateuse : aspects fondamentaux. Actualités Néphrologiques 2008 ; 87–98.
  19. Inoue T, Okada H, Takenaka T. et al. A case report suggesting the occurrence of epithelial-mesenchymal transition in obstructive nephropathy. Clin Exp Nephrol 2009 ; 13 : 385–388. [CrossRef] [PubMed]
  20. Hertig A, Anglicheau D, Verine J. et al. Early epithelial phenotypic changes predict graft fibrosis. J Am Soc Nephrol 2008 ; 19 : 1584–1589. [CrossRef] [PubMed]
  21. Kim M, Maeng Y, Sung WJ. et al. The differential expression of TGF-β1, ILK and wnt signaling inducing epithelial to mesenchymal transition in human renal fibrogenesis: an immunohistochemical study. Int J Clin Exp Pathol 2013 ; 9 : 1747–1758.
  22. Del Prete D, Ceol M, Anglani F. et al. Early activation of fibrogenesis in transplanted kidneys: a study on serial renal biopsies. Exp Mol Pathol 2009 ; 87 : 141–145. [CrossRef] [PubMed]
  23. Schwarz A, Mengel M, Gwinner W. et al. Protocol biopsy program after renal transplantation: structure and first results. Transplant Proc 2002 ; 34 : 2238–2239. [CrossRef] [PubMed]
  24. Hertig A, Xu-Dubois YC, Rondeau E. Transition épithélio-mésenchymateuse : un marqueur utile en transplantation rénale. Actualités Néphrologiques 2008 ; 99–111.
  25. Vongwiwatana A, Tasanarong A, Rayner DC. et al. Epithelial to mesenchymal transition during late deterioration of human kidney transplants: the role of tubular cells in fibrogenesis. Am J Transplant 2005 ; 5 : 1367–1374. [CrossRef] [PubMed]
  26. Hertig A, Verine J, Mougenot B. et al. Risk factors for early epithelial to mesenchymal transition in renal grafts. Am J Transplant 2006 ; 6 : 2937–2946. [CrossRef] [PubMed]
  27. Rastaldi MP, Ferrario F, Giardino L. Epithelial-mesenchymal transition of tubular epithelial cells in human renal biopsies. Kidney Int 2002 ; 62 : 137–146. [CrossRef] [PubMed]
  28. Galichon P, Hertig A. Epithelial to mesenchymal transition as a biomarker in renal fibrosis: are we ready for the bedside?. Fibrog Tis Rep 2011 ; 4 : 11. [CrossRef]
  29. Diaz R, Kim JW, Hui J. et al. Evidence for the epithelial to mesenchymal transition in biliary atresia fibrosis. Hum Pathol 2008 ; 39 : 102–115. [CrossRef] [PubMed]
  30. Ghosh AK, Quaggin SE, Vaughan DE. Molecular basis of organ fibrosis: Potential therapeutic approaches. Exp Biol Med 2013 ; 238 : 461–481. [CrossRef] [PubMed]
  31. Huang Y, Border WA, Noble NA. Perspectives on blockade of TGF-beta 1 overexpression. Kidney Int 2006 ; 69 : 1713–1714. [CrossRef] [PubMed]
  32. Liu X, Hu H, Yin JQ. Therapeutic strategies against TGF-beta signaling pathway in hepatic fibrosis. Liver Int 2006 ; 26 : 8–22. [CrossRef] [PubMed]
  33. Yu L, Border WA, Anderson I, McCourt, et al. Combining TGF-beta inhibition and angiotensin II blockade results in enhanced antifibrotic effect. Kidney Int 2004 ; 66 : 1774–1784. [CrossRef] [PubMed]
  34. Isaka Y, Tsujie M, Ando Y. et al. Transforming growth factor-beta 1 antisense oligodeoxynucleotides block interstitial fibrosis in unilateral ureteral obstruction. Kidney Int 2000 ; 58 : 1885–1892. [CrossRef] [PubMed]
  35. Border WA, Noble NA, Yamamoto T. et al. Natural inhibitor of transforming growth factor-beta protects against scarring in experimental kidney disease. Nature 1992 ; 360 : 361–364. [CrossRef] [PubMed]
  36. Lan HY, Mu W, Tomita N. et al. Inhibition of renal fibrosis by gene transfer of inducible Smad7 using ultrasound-microbubble system in rat UUO model. J Am Soc Nephrol 2003 ; 14 : 1535–1548. [CrossRef] [PubMed]
  37. Sharma K, Jin Y, Guo J, Ziyadeh F. Neutralization of TGF-beta by anti-TGF-beta antibody attenuates kidney hypertrophy and the enhanced extracellular matrix gene expression in STZ-induced diabetic mice. Diabetes 1996 ; 45 : 522–530. [CrossRef] [PubMed]
  38. Ziyadeh FN, Hoffman BB, Han DC. et al. Long-term prevention of renal insufficiency, excess matrix gene expression, and glomerular mesangial matrix expansion by treatment with monoclonal antitransforming growth factor-beta antibody in db/db diabetic mice. Proc Natl Acad Sci USA 2000 ; 97 : 8015–8020. [CrossRef]
  39. Sugimoto H, LeBleu VS, Bosukonda D. et al. Activin-like kinase 3 is important for kidney regeneration and reversal of fibrosis. Nat Med 2012 ; 18 : 396–405. [CrossRef] [PubMed]
  40. Klahr S.. The bone morphogenic proteins (BMPs): their role in renal fibrosis and renal function. J Nephrol 2003 ; 16 : 179–185. [PubMed]
  41. Whitman M, Rosen V, Brivanlou AH. et al. Regarding the mechanism of action of a proposed peptide agonist of the bonmorphogenetic protein: receptor activin-like kinase 3. Nat Med 2013 ; 19 : 809–810. [CrossRef] [PubMed]
  42. Yang J, Liu Y. Blockage of tubular epithelial to myofibroblast transition by hepatocyte growth factor prevents renal interstitial fibrosis. J Am Soc Nephrol 2002 ; 13 : 96–107. [PubMed]
  43. Klein J, Miravete M, Buffin-Meyer B. et al. La fibrose tubulo-interstitielle rénale. Med Sci (Paris) 2011 ; 27 : 55–61. [CrossRef] [EDP Sciences] [PubMed]
  44. Favreau F, Giraud S, Bon D. et al. L’ischémie-reperfusion. Med Sci (Paris) 2013 ; 29 : 183–188. [CrossRef] [EDP Sciences] [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.