Free Access
Issue
Med Sci (Paris)
Volume 30, Number 12, Décembre 2014
Page(s) 1101 - 1109
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20143012013
Published online 24 December 2014
  1. Sarzi E, Rötig A. Instabilité du génome mitochondrial et pathologies associées. Med Sci (Paris) 2010 ; 26 : 171–176. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  2. Lenaers G, Amati-Bonneau P, Delettre C, et al. De la levure aux maladies neuro-dégénératives. Med Sci (Paris) 2010 ; 26 : 836–841. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  3. Voisset C, Blondel M. Chémobiologie à l’happy hour : la levure comme modèle de criblage pharmacologique. Med Sci (Paris) 2014 ; 30 : 1161–1168. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  4. Kucharczyk R, Rak M, di Rago JP. Biochemical consequences in yeast of the human mitochondrial DNA 8993T>C mutation in the ATPase6 gene found in NARP/MILS patients. Biochim Biophys Acta 2009 ; 1793 : 817–824. [CrossRef] [PubMed] [Google Scholar]
  5. Montanari A, Zhou YF, D’Orsi MF, et al. Analyzing the suppression of respiratory defects in the yeast model of human mitochondrial tRNA diseases. Gene 2013 ; 527 : 1–9. [CrossRef] [PubMed] [Google Scholar]
  6. Coulombel L. Reprogrammation nucléaire d’une cellule différenciée : on efface tout et on recommence. Med Sci (Paris) 2007 ; 23 : 667–670. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  7. King MP, Attardi G. Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science 1989 ; 246 : 500–503. [CrossRef] [PubMed] [Google Scholar]
  8. Swerdlow RH. Mitochondria in cybrids containing mtDNA from persons with mitochondriopathies. J Neurosci Res 2007 ; 85 : 3416–3428. [CrossRef] [PubMed] [Google Scholar]
  9. Qiang B, Hamamah S, De Vos J. iPS : des erreurs de jeunesse ? Med Sci (Paris) 2011 ; 27 : 805–807. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  10. Jenuth JP, Peterson AC, Shoubridge EA. Tissue-specific selection for different mtDNA genotypes in heteroplasmic mice. Nat Genet 1997 ; 16 : 93–95. [Google Scholar]
  11. Nakada K, Hayashi J. Transmitochondrial mice as models for mitochondrial DNA-based diseases. Exp Anim 2011 ; 60 : 421–431. [CrossRef] [PubMed] [Google Scholar]
  12. Trifunovic A, Wredenberg A, Falkenberg M, et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 2004 ; 429 : 417–423. [CrossRef] [PubMed] [Google Scholar]
  13. Tyynismaa H, Mjosund KP, Wanrooij S, et al. Mutant mitochondrial helicase Twinkle causes multiple mtDNA deletions and a late-onset mitochondrial disease in mice. Proc Natl Acad Sci USA 2005 ; 102 : 17687–17692. [CrossRef] [Google Scholar]
  14. Larsson NG, Wang J, Wilhelmsson H, et al. Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice [see comments]. Nat Genet 1998 ; 18 : 231–236. [CrossRef] [PubMed] [Google Scholar]
  15. Brown DT, Herbert M, Lamb VK, et al. Transmission of mitochondrial DNA disorders: possibilities for the future. Lancet 2006 ; 368 : 87–89. [CrossRef] [PubMed] [Google Scholar]
  16. Fulka J, Jr, Fulka H, John JC. Transmission of mitochondrial DNA disorders: possibilities for the elimination of mutated mitochondria. Cloning Stem Cells 2007 ; 9 : 47–50. [CrossRef] [PubMed] [Google Scholar]
  17. Hafner S, Coulombel L. Naissance de Mito et Tracker. Med Sci (Paris) 2009 ; 25 : 802–803. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  18. Craven L, Tuppen HA, Greggains GD, et al. Pronuclear transfer in human embryos to prevent transmission of mitochondrial DNA disease. Nature 2010 ; 465 : 82–85. [CrossRef] [PubMed] [Google Scholar]
  19. Steffann J, Gigarel N, Samuels DC, et al. Data from artificial models of mitochondrial DNA disorders are not always applicable to humans. Cell Rep 2014 ; 7 : 933–934. [CrossRef] [PubMed] [Google Scholar]
  20. Santra S, Gilkerson RW, Davidson M, Schon EA. Ketogenic treatment reduces deleted mitochondrial DNAs in cultured human cells. Ann Neurol 2004 ; 56 : 662–669. [CrossRef] [PubMed] [Google Scholar]
  21. Noh HS, Kim YS, Choi WS. Neuroprotective effects of the ketogenic diet. Epilepsia 2008 ; 49 Suppl 8 : 120–123. [CrossRef] [PubMed] [Google Scholar]
  22. Ahola-Erkkila S, Carroll CJ, Peltola-Mjosund K, et al. Ketogenic diet slows down mitochondrial myopathy progression in mice. Hum Mol Genet 2010 ; 19 : 1974–1984. [CrossRef] [PubMed] [Google Scholar]
  23. Hawke TJ, Garry DJ. Myogenic satellite cells: physiology to molecular biology. J Appl Physiol 2001 ; 91 : 534–551. [PubMed] [Google Scholar]
  24. Andrews RM, Griffiths PG, Chinnery PF, Turnbull DM. Evaluation of bupivacaine-induced muscle regeneration in the treatment of ptosis in patients with chronic progressive external ophthalmoplegia and Kearns-Sayre syndrome. Eye (Lond) 1999 ; 13 : 769–772. [CrossRef] [PubMed] [Google Scholar]
  25. Alexeyev MF, Venediktova N, Pastukh V, et al. Selective elimination of mutant mitochondrial genomes as therapeutic strategy for the treatment of NARP and MILS syndromes. Gene Ther 2008 ; 15 : 516–523. [CrossRef] [PubMed] [Google Scholar]
  26. Bacman SR, Williams SL, Garcia S, Moraes CT. Organ-specific shifts in mtDNA heteroplasmy following systemic delivery of a mitochondria-targeted restriction endonuclease. Gene Ther 2010 ; 17 : 713–720. [CrossRef] [PubMed] [Google Scholar]
  27. Klug A. The discovery of zinc fingers and their applications in gene regulation and genome manipulation. Annu Rev Biochem 2010 ; 79 : 213–231. [CrossRef] [PubMed] [Google Scholar]
  28. Minczuk M, Papworth MA, Miller JC, et al. Development of a single-chain, quasi-dimeric zinc-finger nuclease for the selective degradation of mutated human mitochondrial DNA. Nucleic Acids Res 2008 ; 36 : 3926–3938. [CrossRef] [PubMed] [Google Scholar]
  29. Dupret B, Angrand PO. L’ingénierie des génomes par les TALEN. Med Sci (Paris) 2014 ; 30 : 186–193. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  30. Bacman SR, Williams SL, Pinto M, et al. Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nat Med 2013 ; 19 : 1111–1113. [CrossRef] [PubMed] [Google Scholar]
  31. Taylor RW, Chinnery PF, Turnbull DM, Lightowlers RN. Selective inhibition of mutant human mitochondrial DNA replication in vitro by peptide nucleic acids. Nat Genet 1997 ; 15 : 212–215. [CrossRef] [PubMed] [Google Scholar]
  32. Comte C, Tonin Y, Heckel-Mager AM, et al. Mitochondrial targeting of recombinant RNAs modulates the level of a heteroplasmic mutation in human mitochondrial DNA associated with Kearns Sayre Syndrome. Nucleic Acids Res 2013 ; 41 : 418–433. [CrossRef] [PubMed] [Google Scholar]
  33. Tonin Y, Heckel AM, Vysokikh M, et al. Modeling of antigenomic therapy of mitochondrial diseases by mitochondrially addressed RNA targeting a pathogenic point mutation in mitochondrial DNA. J Biol Chem 2014 ; 289 : 13323–13334. [CrossRef] [PubMed] [Google Scholar]
  34. Gray RE, Law RH, Devenish RJ, Nagley P. Allotopic expression of mitochondrial ATP synthase genes in nucleus of Saccharomyces cerevisiae. Methods Enzymol 1996 ; 264 : 369–389. [CrossRef] [PubMed] [Google Scholar]
  35. Perales-Clemente E, Fernandez-Silva P, Acin-Perez R, et al. Allotopic expression of mitochondrial-encoded genes in mammals: achieved goal, undemonstrated mechanism or impossible task?. Nucleic Acids Res 2010 ; 39 : 225–234. [CrossRef] [PubMed] [Google Scholar]
  36. Bonnet C, Augustin S, Ellouze S, et al. The optimized allotopic expression of ND1 or ND4 genes restores respiratory chain complex I activity in fibroblasts harboring mutations in these genes. Biochim Biophys Acta 2008 ; 1783 : 1707–1717. [CrossRef] [PubMed] [Google Scholar]
  37. Kolesnikova OA, Entelis NS, Jacquin-Becker C, et al. Nuclear DNA-encoded tRNAs targeted into mitochondria can rescue a mitochondrial DNA mutation associated with the MERRF syndrome in cultured human cells. Hum Mol Genet 2004 ; 13 : 2519–2534. [CrossRef] [PubMed] [Google Scholar]
  38. Karicheva OZ, Kolesnikova OA, Schirtz T, et al. Correction of the consequences of mitochondrial 3243A>G mutation in the MT-TL1 gene causing the MELAS syndrome by tRNA import into mitochondria. Nucleic Acids Res 2011 ; 39 : 8173–8186. [CrossRef] [PubMed] [Google Scholar]
  39. Belostotsky R, Frishberg Y, Entelis N. Human mitochondrial tRNA quality control in health and disease: A channeling mechanism?. RNA Biol 2012 ; 9 : 33–39. [CrossRef] [PubMed] [Google Scholar]
  40. Li R, Guan MX. Human mitochondrial leucyl-tRNA synthetase corrects mitochondrial dysfunctions due to the tRNALeu(UUR) A3243G mutation, associated with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like symptoms and diabetes. Mol Cell Biol 2010 ; 30 : 2147–2154. [CrossRef] [PubMed] [Google Scholar]
  41. Hornig-Do HT, Montanari A, Rozanska A, et al. Human mitochondrial leucyl tRNA synthetase can suppress non cognate pathogenic mt-tRNA mutations. EMBO Mol Med 2014 ; 6 : 183–193. [PubMed] [Google Scholar]
  42. Ibrahim N, Handa H, Cosset A, et al. DNA delivery to mitochondria: Sequence specificity and energy enhancement. Pharm Res 2011 ; 28 : 2871–2882. [CrossRef] [PubMed] [Google Scholar]
  43. Wang G, Shimada E, Zhang J, et al. Correcting human mitochondrial mutations with targeted RNA import. Proc Natl Acad Sci USA 2012 ; 109 : 4840–4845. [CrossRef] [Google Scholar]
  44. Pfeffer G, Majamaa K, Turnbull DM, et al. Treatment for mitochondrial disorders. Cochrane Database Syst Rev 2012 ; 4 : CD004426. [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.