Free Access
Med Sci (Paris)
Volume 30, Number 12, Décembre 2014
Page(s) 1091 - 1100
Section M/S Revues
Published online 24 December 2014
  1. Katz JN. Lumbar disc disorders and low-back pain : socioeconomic factors and consequences. J Bone Joint Surg Am 2006 ; 88 : 21–24. [CrossRef] [PubMed] [Google Scholar]
  2. Clouet J, Vinatier C, Merceron C, et al. The intervertebral disc : from pathophysiology to tissue engineering. Joint Bone Spine 2009 ; 76 : 614–618. [CrossRef] [PubMed] [Google Scholar]
  3. Lee CR, Sakai D, Nakai T, et al. A phenotypic comparison of intervertebral disc and articular cartilage cells in the rat. Eur Spine J 2007 ; 16 : 2174–2185. [CrossRef] [PubMed] [Google Scholar]
  4. Clouet J, Grimandi G, Pot-Vaucel M, et al. Identification of phenotypic discriminating markers for intervertebral disc cells and articular chondrocytes. Rheumatology 2009 ; 48 : 1447–1450. [CrossRef] [PubMed] [Google Scholar]
  5. Sakai D, Nakai T, Mochida J, et al. Differential phenotype of intervertebral disc cells : microarray and immunohistochemical analysis of canine nucleus pulposus and anulus fibrosus. Spine (Phila Pa 1976) 2009 ; 34 : 1448–1456. [CrossRef] [PubMed] [Google Scholar]
  6. Minogue BM, Richardson SM, Zeef LA, et al. Characterization of the human nucleus pulposus cell phenotype and evaluation of novel marker gene expression to define adult stem cell differentiation. Arthritis Rheum 2010 ; 62 : 3695–3705. [CrossRef] [PubMed] [Google Scholar]
  7. McCann MR, Tamplin OJ, Rossant J, Seguin CA. Tracing notochord-derived cells using a Noto-cre mouse : implications for intervertebral disc development. Dis Model Mech 2012 ; 5 : 73–82. [CrossRef] [PubMed] [Google Scholar]
  8. Choi KS, Cohn MJ, Harfe BD. Identification of nucleus pulposus precursor cells and notochordal remnants in the mouse : implications for disk degeneration and chordoma formation. Dev Dyn 2008 ; 237 : 3953–3958. [CrossRef] [PubMed] [Google Scholar]
  9. Peacock A. Observations on the postnatal structure of the intervertebral disc in man. J Anat 1952 ; 86 : 162–179. [PubMed] [Google Scholar]
  10. Roberts S, Evans H, Trivedi J, Menage J. Histology and pathology of the human intervertebral disc. J Bone Joint Surg Am 2006 ; 88 Suppl 2 : 10–14. [CrossRef] [Google Scholar]
  11. Erwin WM, Ashman K, O’Donnel P, Inman RD. Nucleus pulposus notochord cells secrete connective tissue growth factor and up-regulate proteoglycan expression by intervertebral disc chondrocytes. Arthritis Rheum 2006 ; 54 : 3859–3867. [CrossRef] [PubMed] [Google Scholar]
  12. Hohaus C, Ganey TM, Minkus Y, Meisel HJ. Cell transplantation in lumbar spine disc degeneration disease. Eur Spine J 2008 ; 17 Suppl 4 : 492–503. [Google Scholar]
  13. Acosta FL, Jr, Metz L, Adkisson HD, et al. Porcine intervertebral disc repair using allogeneic juvenile articular chondrocytes or mesenchymal stem cells. Tissue Eng Part A 2011 ; 17 : 3045–3055. [CrossRef] [PubMed] [Google Scholar]
  14. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999 ; 284 : 143–147. [CrossRef] [PubMed] [Google Scholar]
  15. Bernardo ME, Fibbe WE. Mesenchymal stromal cells : sensors and switchers of inflammation. Cell Stem Cell 2013 ; 13 : 392–402. [CrossRef] [PubMed] [Google Scholar]
  16. Ankrum JA, Ong JF, Karp JM. Mesenchymal stem cells : immune evasive, not immune privileged. Nat Biotechnol 2014 ; 32 : 252–260. [CrossRef] [PubMed] [Google Scholar]
  17. Stoyanov JV, Gantenbein-Ritter B, Bertolo A, et al. Role of hypoxia and growth and differentiation factor-5 on differentiation of human mesenchymal stem cells towards intervertebral nucleus pulposus-like cells. Eur Cell Mater 2011 ; 21 : 533–547. [PubMed] [Google Scholar]
  18. Korecki CL, Taboas JM, Tuan RS, Iatridis JC., Notochordal cell conditioned medium stimulates mesenchymal stem cell differentiation toward a young nucleus pulposus phenotype. Stem Cell Res Ther 2010 ; 1 : 18. [CrossRef] [PubMed] [Google Scholar]
  19. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007 ; 131 : 861–872. [CrossRef] [PubMed] [Google Scholar]
  20. Coulombel L. Cellules iPS humaines : déjà ! Med Sci (Paris) 2008 ; 24 : 102–104. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  21. Song P, Inagaki Y, Sugawara Y, Kokudo N. Perspectives on human clinical trials of therapies using iPS cells in Japan : reaching the forefront of stem-cell therapies. Biosci Trends 2013 ; 7 : 157–158. [PubMed] [Google Scholar]
  22. Tang X, Jing L, Chen J., Changes in the molecular phenotype of nucleus pulposus cells with intervertebral disc aging. PLoS One 2012 ; 7 : e52020. [CrossRef] [PubMed] [Google Scholar]
  23. Chen J, Lee EJ, Jing L, et al. Differentiation of mouse induced pluripotent stem cells (iPSCs) into nucleus pulposus-like cells in vitro. PLoS One 2013 ; 8 : e75548. [CrossRef] [PubMed] [Google Scholar]
  24. Bartunek J, Behfar A, Dolatabadi D, et al. Reply : The C-CURE randomized clinical trial (cardiopoietic stem cell therapy in heart failure). J Am Coll Cardiol 2013 ; 62 : 2454–2456. [CrossRef] [PubMed] [Google Scholar]
  25. Goldschlager T, Jenkin G, Ghosh P, et al. Potential applications for using stem cells in spine surgery. Curr Stem Cell Res Ther 2010 ; 5 : 345–355. [CrossRef] [PubMed] [Google Scholar]
  26. Sun Z, Zhang M, Zhao XH, et al. Immune cascades in human intervertebral disc : the pros and cons. Int J Clin Exp Pathol 2013 ; 6 : 1009–1014. [PubMed] [Google Scholar]
  27. Li X, Lee JP, Balian G, Greg Anderson D. Modulation of chondrocytic properties of fat-derived mesenchymal cells in co-cultures with nucleus pulposus. Connect Tissue Res 2005 ; 46 : 75–82. [CrossRef] [PubMed] [Google Scholar]
  28. Sakai D. Future perspectives of cell-based therapy for intervertebral disc disease. Eur Spine J 2008 ; 17 Suppl 4 : 452–458. [CrossRef] [PubMed] [Google Scholar]
  29. Coric D, Pettine K, Sumich A, Boltes MO. Prospective study of disc repair with allogeneic chondrocytes presented at the 2012 Joint Spine Section Meeting. J Neurosurg Spine 2013 ; 18 : 85–95. [CrossRef] [PubMed] [Google Scholar]
  30. Haufe SM, Mork AR. Intradiscal injection of hematopoietic stem cells in an attempt to rejuvenate the intervertebral discs. Stem Cells Dev 2006 ; 15 : 136–137. [CrossRef] [PubMed] [Google Scholar]
  31. Yoshikawa T, Ueda Y, Miyazaki K, et al. Disc regeneration therapy using marrow mesenchymal cell transplantation : a report of two case studies. Spine (Phila Pa 1976) 2010 ; 35 : E475–E480. [PubMed] [Google Scholar]
  32. Orozco L, Soler R, Morera C, et al. Intervertebral disc repair by autologous mesenchymal bone marrow cells : a pilot study. Transplantation 2011 ; 92 : 822–828. [CrossRef] [PubMed] [Google Scholar]
  33. Liang Y, Walczak P, Bulte JW. The survival of engrafted neural stem cells within hyaluronic acid hydrogels. Biomaterials 2013 ; 34 : 5521–5529. [CrossRef] [PubMed] [Google Scholar]
  34. Iatridis JC, Nicoll SB, Michalek AJ, et al. Role of biomechanics in intervertebral disc degeneration and regenerative therapies : what needs repairing in the disc and what are promising biomaterials for its repair? Spine J 2013 ; 13 : 243–262. [CrossRef] [PubMed] [Google Scholar]
  35. Silva-Correia J, Correia SI, Oliveira JM, Reis RL. Tissue engineering strategies applied in the regeneration of the human intervertebral disk. Biotechnol Adv 2013 ; 31 : 1514–1531. [CrossRef] [PubMed] [Google Scholar]
  36. Leung VY, Tam V, Chan D, et al. Tissue engineering for intervertebral disk degeneration. Orthop Clin North Am 2011 ; 42 : 575–583. [CrossRef] [PubMed] [Google Scholar]
  37. Vinatier C, Magne D, Weiss P, et al. A silanized hydroxypropyl methylcellulose hydrogel for the three-dimensional culture of chondrocytes. Biomaterials 2005 ; 26 : 6643–6651. [CrossRef] [PubMed] [Google Scholar]
  38. Collin EC, Grad S, Zeugolis DI, et al. An injectable vehicle for nucleus pulposus cell-based therapy. Biomaterials 2011 ; 32 : 2862–2870. [CrossRef] [PubMed] [Google Scholar]
  39. Cheng YH, Yang SH, Su WY, et al. Thermosensitive chitosan-gelatin-glycerol phosphate hydrogels as a cell carrier for nucleus pulposus regeneration : an in vitro study. Tissue Eng Part A 2010 ; 16 : 695–703. [CrossRef] [PubMed] [Google Scholar]
  40. Huang B, Li CQ, Zhou Y, et al. Collagen II/hyaluronan/chondroitin-6-sulfate tri-copolymer scaffold for nucleus pulposus tissue engineering. J Biomed Mater Res B Appl Biomater 2010 ; 92 : 322–331. [PubMed] [Google Scholar]
  41. Sakai D, Mochida J, Iwashina T, et al. Regenerative effects of transplanting mesenchymal stem cells embedded in atelocollagen to the degenerated intervertebral disc. Biomaterials 2006 ; 27 : 335–345. [CrossRef] [PubMed] [Google Scholar]
  42. Ruan DK, Xin H, Zhang C, et al. Experimental intervertebral disc regeneration with tissue-engineered composite in a canine model. Tissue Eng Part A 2010 ; 16 : 2381–2389. [CrossRef] [PubMed] [Google Scholar]
  43. Huang B, Zhuang Y, Li CQ, et al. Regeneration of the intervertebral disc with nucleus pulposus cell-seeded collagen II/hyaluronan/chondroitin-6-sulfate tri-copolymer constructs in a rabbit disc degeneration model. Spine (Phila Pa 1976) 2011 ; 36 : 2252–2259. [CrossRef] [PubMed] [Google Scholar]
  44. Mehrkens A, Muller AM, Valderrabano V, et al. Tissue engineering approaches to degenerative disc disease-a meta-analysis of controlled animal trials. Osteoarthritis Cartilage 2012 ; 20 : 1316–1325. [CrossRef] [PubMed] [Google Scholar]
  45. Chabannon C, Sabatier F, Rial-Sebbag E, et al. Les unités de thérapie cellulaire à l’épreuve de la réglementation sur les médicaments de thérapie innovante. Med Sci (Paris) 2014 ; 30 : 576–583. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.