Free Access
Issue
Med Sci (Paris)
Volume 30, Number 12, Décembre 2014
Page(s) 1087 - 1090
Section Nouvelles
DOI https://doi.org/10.1051/medsci/20143012011
Published online 24 December 2014
  1. Lui JH, Hansen DV, Kriegstein AR. Development and evolution of the human neocortex. Cell 2011 ; 146 : 18–36. [CrossRef] [PubMed] [Google Scholar]
  2. Kerjan G, Gleeson JG. Genetic mechanisms underlying abnormal neuronal migration in classical lissencephaly. Trends Genet 2007 ; 23 : 623–630. [CrossRef] [PubMed] [Google Scholar]
  3. Götz M, Huttner WB. The cell biology of neurogenesis. Nat Rev Mol Cell Biol 2005 ; 6 : 777–788. [CrossRef] [PubMed] [Google Scholar]
  4. Malatesta P, Götz M. Radial glia - from boring cables to stem cell stars. Development 2013 ; 140 : 483–486. [CrossRef] [PubMed] [Google Scholar]
  5. Francis F, Meyer G, Fallet-Bianco C, et al. Human disorders of cortical development: from past to present. Eur J Neurosci 2006 ; 23 : 877–893. [CrossRef] [PubMed] [Google Scholar]
  6. Chevassus-au-Louis N, Represa A. The right neuron at the wrong place: biology of heterotopic neurons in cortical neuronal migration disorders, with special reference to associated pathologies. Cell Mol Life Sci 1999 ; 55 : 1206–1215. [CrossRef] [PubMed] [Google Scholar]
  7. Croquelois A, Giuliani F, Savary C, et al. Characterization of the HeCo mutant mouse: a new model of subcortical band heterotopia associated with seizures and behavioral deficits. Cereb Cortex 2009 ; 19 : 563–575. [CrossRef] [PubMed] [Google Scholar]
  8. Harding B. Gray matter heterotopia. In : Guerrini R, Andermann F, Canapicchi R, Roger J, Zifkin BG, Pfanner P, eds. Dysplasias of cerebral cortex and epilepsy. Philadelphia, USA : Lippincott-Raven, 1996 : 81–88. [Google Scholar]
  9. Kielar M, Phan Dinh Tuy F, Bizzotto S, et al. Mutations in Eml1 lead to ectopic progenitors and neuronal heterotopia in mouse and human. Nat Neurosci 2014 ; 17 : 923–933. [CrossRef] [PubMed] [Google Scholar]
  10. Baust C, Gagnier L, Baillie GJ, et al. Structure and expression of mobile ETnII retroelements and their coding-competent MusD relatives in the mouse. J Virol 2003 ; 77 : 11448–11158. [CrossRef] [PubMed] [Google Scholar]
  11. Barkovich AJ, Guerrini R, Kuzniecky RI, et al. A developmental and genetic classification for malformations of cortical development: update 2012. Brain 2012 ; 135 : 1348–1369. [CrossRef] [PubMed] [Google Scholar]
  12. Suprenant KA, Dean K, McKee J, Hake S. EMAP, an echinoderm microtubule-associated protein found in microtubule-ribosome complexes. J Cell Sci 1993 ; 104 : 445–450. [PubMed] [Google Scholar]
  13. Eichenmüller B, Everley P, Palange J, Lepley D, Suprenant KA. The human EMAP-like protein-70 (ELP70) is a microtubule destabilizer that localizes to the mitotic apparatus. J Biol Chem 2002 ; 277 : 1301–1309. [CrossRef] [PubMed] [Google Scholar]
  14. Jaglin XH, Chelly J. Tubulin–related cortical dysgeneses: microtubule dysfunction underlying neuronal migration defects. Trends Genet 2009 ; 25 : 555–566. [CrossRef] [PubMed] [Google Scholar]
  15. Kosodo Y, Röper K, Haubensak W, et al. Asymmetric distribution of the apical plasma membrane during neurogenic divisions of mammalian neuroepithelial cells. EMBO J 2004 ; 23 : 2314–2324. [CrossRef] [PubMed] [Google Scholar]
  16. Konno D, Shioi G, Shitamukai A, et al. Neuroepithelial progenitors undergo LGN-dependent planar divisions to maintain self-renewability during mammalian neurogenesis. Nat Cell Biol 2008 ; 10 : 93–101. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.