Accès gratuit
Numéro
Med Sci (Paris)
Volume 30, Numéro 12, Décembre 2014
Page(s) 1087 - 1090
Section Nouvelles
DOI https://doi.org/10.1051/medsci/20143012011
Publié en ligne 24 décembre 2014
  1. Lui JH, Hansen DV, Kriegstein AR. Development and evolution of the human neocortex. Cell 2011 ; 146 : 18–36. [CrossRef] [PubMed] [Google Scholar]
  2. Kerjan G, Gleeson JG. Genetic mechanisms underlying abnormal neuronal migration in classical lissencephaly. Trends Genet 2007 ; 23 : 623–630. [CrossRef] [PubMed] [Google Scholar]
  3. Götz M, Huttner WB. The cell biology of neurogenesis. Nat Rev Mol Cell Biol 2005 ; 6 : 777–788. [CrossRef] [PubMed] [Google Scholar]
  4. Malatesta P, Götz M. Radial glia - from boring cables to stem cell stars. Development 2013 ; 140 : 483–486. [CrossRef] [PubMed] [Google Scholar]
  5. Francis F, Meyer G, Fallet-Bianco C, et al. Human disorders of cortical development: from past to present. Eur J Neurosci 2006 ; 23 : 877–893. [CrossRef] [PubMed] [Google Scholar]
  6. Chevassus-au-Louis N, Represa A. The right neuron at the wrong place: biology of heterotopic neurons in cortical neuronal migration disorders, with special reference to associated pathologies. Cell Mol Life Sci 1999 ; 55 : 1206–1215. [CrossRef] [PubMed] [Google Scholar]
  7. Croquelois A, Giuliani F, Savary C, et al. Characterization of the HeCo mutant mouse: a new model of subcortical band heterotopia associated with seizures and behavioral deficits. Cereb Cortex 2009 ; 19 : 563–575. [CrossRef] [PubMed] [Google Scholar]
  8. Harding B. Gray matter heterotopia. In : Guerrini R, Andermann F, Canapicchi R, Roger J, Zifkin BG, Pfanner P, eds. Dysplasias of cerebral cortex and epilepsy. Philadelphia, USA : Lippincott-Raven, 1996 : 81–88. [Google Scholar]
  9. Kielar M, Phan Dinh Tuy F, Bizzotto S, et al. Mutations in Eml1 lead to ectopic progenitors and neuronal heterotopia in mouse and human. Nat Neurosci 2014 ; 17 : 923–933. [CrossRef] [PubMed] [Google Scholar]
  10. Baust C, Gagnier L, Baillie GJ, et al. Structure and expression of mobile ETnII retroelements and their coding-competent MusD relatives in the mouse. J Virol 2003 ; 77 : 11448–11158. [CrossRef] [PubMed] [Google Scholar]
  11. Barkovich AJ, Guerrini R, Kuzniecky RI, et al. A developmental and genetic classification for malformations of cortical development: update 2012. Brain 2012 ; 135 : 1348–1369. [CrossRef] [PubMed] [Google Scholar]
  12. Suprenant KA, Dean K, McKee J, Hake S. EMAP, an echinoderm microtubule-associated protein found in microtubule-ribosome complexes. J Cell Sci 1993 ; 104 : 445–450. [PubMed] [Google Scholar]
  13. Eichenmüller B, Everley P, Palange J, Lepley D, Suprenant KA. The human EMAP-like protein-70 (ELP70) is a microtubule destabilizer that localizes to the mitotic apparatus. J Biol Chem 2002 ; 277 : 1301–1309. [CrossRef] [PubMed] [Google Scholar]
  14. Jaglin XH, Chelly J. Tubulin–related cortical dysgeneses: microtubule dysfunction underlying neuronal migration defects. Trends Genet 2009 ; 25 : 555–566. [CrossRef] [PubMed] [Google Scholar]
  15. Kosodo Y, Röper K, Haubensak W, et al. Asymmetric distribution of the apical plasma membrane during neurogenic divisions of mammalian neuroepithelial cells. EMBO J 2004 ; 23 : 2314–2324. [CrossRef] [PubMed] [Google Scholar]
  16. Konno D, Shioi G, Shitamukai A, et al. Neuroepithelial progenitors undergo LGN-dependent planar divisions to maintain self-renewability during mammalian neurogenesis. Nat Cell Biol 2008 ; 10 : 93–101. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.