Free Access
Med Sci (Paris)
Volume 30, Number 12, Décembre 2014
Page(s) 1110 - 1122
Section M/S Revues
Published online 24 December 2014
  1. Beinert H. Iron-sulfur proteins: ancient structures, still full of surprises. J Biol Inorg Chem 2000 ; 5 : 2–15. [CrossRef] [PubMed] [Google Scholar]
  2. Fontecave M. Iron-sulfur clusters: ever-expanding roles. Nat Chem Biol 2006 ; 4 : 171–174. [CrossRef] [Google Scholar]
  3. Kiley PJ, Beinert H. The role of Fe-S proteins in sensing and regulation in bacteria. Curr Opin Microbiol 2003 ; 2 : 181–185. [CrossRef] [Google Scholar]
  4. Jacobson MR, Cash VL, Weiss MC, et al. Biochemical and genetic analysis of the nifUSVWZM cluster from Azotobacter vinelandii. Mol Gen Genet 1989 ; 219 : 49–57. [CrossRef] [PubMed] [Google Scholar]
  5. Ayala-Castro C, Saini A, Outten FW. Fe-S cluster assembly pathways in bacteria. Microbiol Mol Biol Rev 2008 ; 72 : 110–125. [CrossRef] [PubMed] [Google Scholar]
  6. Roche B, Aussel L, Ezraty B, et al. Iron/sulfur proteins biogenesis in prokaryotes: formation, regulation and diversity. Biochim Biophys Acta 2013 ; 1827 : 455–469. [CrossRef] [PubMed] [Google Scholar]
  7. Rouault TA. Biogenesis of iron-sulfur clusters in mammalian cells: new insights and relevance to human disease. Dis Model Mech 2012 ; 5 : 155–164. [CrossRef] [PubMed] [Google Scholar]
  8. Stehling O, Lill R., The role of mitochondria in cellular iron-sulfur protein biogenesis: mechanisms, connected processes, diseases. Cold Spring Harb Perspect Biol 2013 ; 5 : a011312. [CrossRef] [PubMed] [Google Scholar]
  9. Beilschmidt LK, Puccio HM. Mammalian Fe-S cluster biogenesis and its implication in disease. Biochimie 2014 ; 100C : 48–60. [CrossRef] [Google Scholar]
  10. Balk J, Schaedler TA. Iron cofactor assembly in plants. Annu Rev Plant Biol 2014 ; 65 : 125–153. [CrossRef] [PubMed] [Google Scholar]
  11. Sharma AK, Pallesen LJ, Spang, RJ, et al. Cytosolic iron-sulfur cluster assembly (CIA) system: factors, mechanism, and relevance to cellular iron regulation. J Biol Chem 2010 ; 285 : 26745–26751. [CrossRef] [PubMed] [Google Scholar]
  12. Netz DJ, Mascarenhas J, Stehling O, et al. Maturation of cytosolic and nuclear iron-sulfur proteins. Trends Cell Biol 2013 ; 8924 : 196–197. [Google Scholar]
  13. Rajagopalan S, Teter SJ, Zwart PH, et al. Studies of IscR reveal a unique mechanism for metal-dependent regulation of DNA binding specificity. Nat Struct Mol Biol 2013 ; 20 : 740–747. [CrossRef] [PubMed] [Google Scholar]
  14. Vinella D, Loiseau L, Ollagnier de Choudens S, et al. In vivo [Fe-S] cluster acquisition by IscR and NsrR, two stress regulators in Escherichia coli. Mol Microbiol 2013 ; 87 : 493–508. [CrossRef] [PubMed] [Google Scholar]
  15. Raulfs EC, O’Carroll IP, Dos Santos PC, et al. In vivo iron-sulfur cluster formation. Proc Natl Acad Sci USA 2008 ; 105 : 8591–8596. [CrossRef] [Google Scholar]
  16. R. Shi A., Proteau M, Villarroya S, et al. Structural basis for Fe-S cluster assembly, tRNA thiolation mediated by IscS protein-protein interactions. PLoS Biol 2010 ; 8 : e1000354. [CrossRef] [PubMed] [Google Scholar]
  17. Marinoni EN, de Oliveira JS, Nicolet Y, et al. (IscS-IscU)2 complex structures provide insights into Fe2S2 biogenesis and transfer. Angew Chem Int Ed 2012 ; 51 : 5439–5442. [CrossRef] [Google Scholar]
  18. Kim JH, Frederick RO, Reinen NM, et al. [2Fe-2S]-ferredoxin binds directly to cysteine desulfurase and supplies an electron for iron-sulfur cluster assembly but is displaced by the scaffold protein or bacterial frataxin. J Am Chem Soc 2013 ; 135 : 8117–8120. [CrossRef] [PubMed] [Google Scholar]
  19. Yan R, Konarev PV, Iannuzzi C, et al. Ferredoxin competes with bacterial frataxin in binding to the desulfurase IscS. J Biol Chem 2013 ; 288 : 24777–24787. [CrossRef] [PubMed] [Google Scholar]
  20. Kampinga HH, Craig EA. The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol 2010 ; 11 : 579–592. [CrossRef] [PubMed] [Google Scholar]
  21. Adinolfi S, Iannuzzi C, Prischi F, et al. Bacterial frataxin CyaY is the gatekeeper of iron-sulfur cluster formation catalyzed by IscS. Nat Struct Mol Biol 2009 ; 16 : 390–396. [CrossRef] [PubMed] [Google Scholar]
  22. Pandey A, Golla R, Yoon H, et al. Persulfide formation on mitochondrial cysteine desulfurase: enzyme activation by a eukaryote-specific interacting protein and Fe-S cluster synthesis. Biochem J 2012 ; 448 : 171–187. [CrossRef] [PubMed] [Google Scholar]
  23. Pandey A, Gordon DM, Pain J, et al. Frataxin directly stimulates mitochondrial cysteine desulfurase by exposing substrate-binding sites, and a mutant Fe-S cluster scaffold protein with frataxin-bypassing ability acts similarly. J Biol Chem 2013 ; 288 : 36773–36786. [CrossRef] [PubMed] [Google Scholar]
  24. Tsai CL, Barondeau DP. Human frataxin is an allosteric switch that activates the Fe-S cluster biosynthetic complex. Biochemistry 2010 ; 49 : 9132–9139. [CrossRef] [PubMed] [Google Scholar]
  25. Colin F, Martelli A, Clémancey M, et al. Mammalian frataxin controls sulfur production and iron entry during de novo Fe4S4 cluster assembly. J Am Chem Soc 2013 ; 135 : 733–740. [CrossRef] [PubMed] [Google Scholar]
  26. Yoon H, Golla R, Lesuisse E, et al. Mutation in the Fe-S scaffold protein Isu bypasses frataxin deletion. Biochem J 2012 ; 441 : 473–480. [CrossRef] [PubMed] [Google Scholar]
  27. Schilke B, Williams B, Knieszner H, et al. Evolution of mitochondrial chaperones utilized in Fe-S cluster biogenesis. Curr Biol 2006 ; 16 : 1660–1665. [CrossRef] [PubMed] [Google Scholar]
  28. Vickery LE, Cupp-Vickery JR. Molecular chaperones HscA/Ssq1 and HscB/Jac1 and their roles in iron-sulfur protein maturation. Crit Rev Biochem Mol Biol 2007 ; 42 : 95–111. [CrossRef] [PubMed] [Google Scholar]
  29. Dai Y, Outten FW. The E. coli SufS-SufE sulfur transfer system is more resistant to oxidative stress that IscS-IscU. FEBS Lett 2012 ; 586 : 4016–4022. [CrossRef] [PubMed] [Google Scholar]
  30. Wollers S, Layer G, Garcia-Serres R, et al. Iron-sulfur (Fe-S) cluster assembly: the SufBCD complex is a new type of Fe-S scaffold with a flavin redox cofactor. J Biol Chem 2010 ; 285 : 23331–23341. [CrossRef] [PubMed] [Google Scholar]
  31. Vinella D, Brochier-Armanet C, Loiseau L, et al. Iron-sulfur (Fe/S) protein biogenesis: phylogenomic, genetic studies of A-type carriers. PLoS Genet 2009 ; 5 : e1000497. [CrossRef] [PubMed] [Google Scholar]
  32. Angelini S, Gerez C, Ollagnier-de Choudens S, et al. NfuA, a new factor required for maturing Fe/S proteins in Escherichia coli under oxidative stress and iron starvation conditions. J Biol Chem 2008 ; 283 : 14084–14091. [CrossRef] [PubMed] [Google Scholar]
  33. Py B, Gerez C, Angelini S, et al. Molecular organization, biochemical function, cellular role and evolution of NfuA, an atypical Fe-S carrier. Mol Microbiol 2012 ; 86 : 155–171. [CrossRef] [PubMed] [Google Scholar]
  34. Loiseau L, Gerez C, Bekker M, et al. ErpA, an iron-sulfur (Fe-S) protein of the A-type essential for respiratory metabolism in Escherichia coli. Proc Natl Acad Sci USA 2007 ; 104 : 13626–13631. [CrossRef] [Google Scholar]
  35. Imlay JA. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat Rev Microbiol 2013 ; 11 : 443–454. [CrossRef] [PubMed] [Google Scholar]
  36. Suhasini AN, Brosh RM, Jr. DNA helicases associated with genetic instability, cancer, and aging. Adv Exp Med Biol 2013 ; 767 : 123–144. [CrossRef] [PubMed] [Google Scholar]
  37. Ye H, Rouault TA. Erythropoiesis and iron sulfur cluster biogenesis. Adv Hematol 2010 : 329394. [PubMed] [Google Scholar]
  38. Tan G, Cheng Z, Pang Y, et al. Copper binding in IscA inhibits iron-sulfur cluster assembly in Escherichia coli. Mol Microbiol 2014 ; 93 : 629–644. [PubMed] [Google Scholar]
  39. Jang S, Imlay JA. Hydrogen peroxide inactivates the Escherichia coli Isc iron-sulphur assembly system, and OxyR induces the Suf system to compensate. Mol Microbiol 2010 ; 78 : 1448–1467. [CrossRef] [PubMed] [Google Scholar]
  40. Lim JG, Choi SH. IscR is a global regulator essential for pathogenesis of Vibrio vulnificus and induced by host cells. Infect Immun 2014 ; 82 : 569–578. [CrossRef] [PubMed] [Google Scholar]
  41. Wong SM, Bernui M, Shen H, et al. Genome-wide fitness profiling reveals adaptations required by Haemophilus in coinfection with influenza A virus in the murine lung. Proc Natl Acad Sci USA 2013 ; 110 : 15413–15418. [CrossRef] [Google Scholar]
  42. Farhan SM, Wang J, Robinson JF, et al. Exome sequencing identifies NFS1 deficiency in a novel Fe-S cluster disease, infantile mitochondrial complex II/III deficiency. Mol Genet Genomic Med 2014 ; 2 : 73–80. [CrossRef] [PubMed] [Google Scholar]
  43. Koeppen AH. Friedreich’s ataxia: pathology, pathogenesis, and molecular genetics. J Neurol Sci 2011 ; 303 : 1–12. [CrossRef] [PubMed] [Google Scholar]
  44. Martelli A, Napierala M, Puccio H. Understanding the genetic and molecular pathogenesis of Friedreich’s ataxia through animal and cellular models. Dis Model Mech 2012 ; 5 : 165–176. [CrossRef] [PubMed] [Google Scholar]
  45. Saha PP, Kumar SK, Srivastava S, et al. The presence of multiple cellular defects associated with a novel G50E iron-sulfur cluster scaffold protein (ISCU) mutation leads to development of mitochondrial myopathy. J Biol Chem 2014 ; 289 : 10359–10377. [CrossRef] [PubMed] [Google Scholar]
  46. Lim SC, Friemel M, Marum JE, et al. Mutations in LYRM4, encoding iron-sulfur cluster biogenesis factor ISD11, cause deficiency of multiple respiratory chain complexes. Hum Mol Genet 2013 ; 22 : 4460–4473. [CrossRef] [PubMed] [Google Scholar]
  47. Ezraty B, Vergnes A, Banzhaf M, et al. Fe-S cluster biosynthesis controls uptake of aminoglycosides in a ROS-less death pathway. Science 2013 ; 340 : 1583–1587. [CrossRef] [PubMed] [Google Scholar]
  48. Damper PD, Epstein W. Role of the membrane potential in bacterial resistance to aminoglycoside antibiotics. Antimicrob Agents Chemother 1981 ; 20 : 803–808. [CrossRef] [PubMed] [Google Scholar]
  49. Mates SM, Eisenberg ES, Mandel LJ, et al. Membrane potential and gentamicin uptake in Staphylococcus aureus. Proc Natl Acad Sci USA 1982 ; 79 : 6693–6697. [CrossRef] [Google Scholar]
  50. Bryan LE, Kwan S. Roles of ribosomal binding, membrane potential, and electron transport in bacterial uptake of streptomycin and gentamicin. Antimicrob Agents Chemother 1983 ; 23 : 835–845. [CrossRef] [PubMed] [Google Scholar]
  51. Taber HW, Mueller JP, Miller PF, et al. Bacterial uptake of aminoglycoside antibiotics. Microbiol Rev 1987 ; 51 : 439–457. [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.