Accès gratuit
Med Sci (Paris)
Volume 30, Numéro 12, Décembre 2014
Page(s) 1110 - 1122
Section M/S Revues
Publié en ligne 24 décembre 2014
  1. Beinert H. Iron-sulfur proteins: ancient structures, still full of surprises. J Biol Inorg Chem 2000 ; 5 : 2–15. [CrossRef] [PubMed] [Google Scholar]
  2. Fontecave M. Iron-sulfur clusters: ever-expanding roles. Nat Chem Biol 2006 ; 4 : 171–174. [CrossRef] [Google Scholar]
  3. Kiley PJ, Beinert H. The role of Fe-S proteins in sensing and regulation in bacteria. Curr Opin Microbiol 2003 ; 2 : 181–185. [CrossRef] [Google Scholar]
  4. Jacobson MR, Cash VL, Weiss MC, et al. Biochemical and genetic analysis of the nifUSVWZM cluster from Azotobacter vinelandii. Mol Gen Genet 1989 ; 219 : 49–57. [CrossRef] [PubMed] [Google Scholar]
  5. Ayala-Castro C, Saini A, Outten FW. Fe-S cluster assembly pathways in bacteria. Microbiol Mol Biol Rev 2008 ; 72 : 110–125. [CrossRef] [PubMed] [Google Scholar]
  6. Roche B, Aussel L, Ezraty B, et al. Iron/sulfur proteins biogenesis in prokaryotes: formation, regulation and diversity. Biochim Biophys Acta 2013 ; 1827 : 455–469. [CrossRef] [PubMed] [Google Scholar]
  7. Rouault TA. Biogenesis of iron-sulfur clusters in mammalian cells: new insights and relevance to human disease. Dis Model Mech 2012 ; 5 : 155–164. [CrossRef] [PubMed] [Google Scholar]
  8. Stehling O, Lill R., The role of mitochondria in cellular iron-sulfur protein biogenesis: mechanisms, connected processes, diseases. Cold Spring Harb Perspect Biol 2013 ; 5 : a011312. [CrossRef] [PubMed] [Google Scholar]
  9. Beilschmidt LK, Puccio HM. Mammalian Fe-S cluster biogenesis and its implication in disease. Biochimie 2014 ; 100C : 48–60. [CrossRef] [Google Scholar]
  10. Balk J, Schaedler TA. Iron cofactor assembly in plants. Annu Rev Plant Biol 2014 ; 65 : 125–153. [CrossRef] [PubMed] [Google Scholar]
  11. Sharma AK, Pallesen LJ, Spang, RJ, et al. Cytosolic iron-sulfur cluster assembly (CIA) system: factors, mechanism, and relevance to cellular iron regulation. J Biol Chem 2010 ; 285 : 26745–26751. [CrossRef] [PubMed] [Google Scholar]
  12. Netz DJ, Mascarenhas J, Stehling O, et al. Maturation of cytosolic and nuclear iron-sulfur proteins. Trends Cell Biol 2013 ; 8924 : 196–197. [Google Scholar]
  13. Rajagopalan S, Teter SJ, Zwart PH, et al. Studies of IscR reveal a unique mechanism for metal-dependent regulation of DNA binding specificity. Nat Struct Mol Biol 2013 ; 20 : 740–747. [CrossRef] [PubMed] [Google Scholar]
  14. Vinella D, Loiseau L, Ollagnier de Choudens S, et al. In vivo [Fe-S] cluster acquisition by IscR and NsrR, two stress regulators in Escherichia coli. Mol Microbiol 2013 ; 87 : 493–508. [CrossRef] [PubMed] [Google Scholar]
  15. Raulfs EC, O’Carroll IP, Dos Santos PC, et al. In vivo iron-sulfur cluster formation. Proc Natl Acad Sci USA 2008 ; 105 : 8591–8596. [CrossRef] [Google Scholar]
  16. R. Shi A., Proteau M, Villarroya S, et al. Structural basis for Fe-S cluster assembly, tRNA thiolation mediated by IscS protein-protein interactions. PLoS Biol 2010 ; 8 : e1000354. [CrossRef] [PubMed] [Google Scholar]
  17. Marinoni EN, de Oliveira JS, Nicolet Y, et al. (IscS-IscU)2 complex structures provide insights into Fe2S2 biogenesis and transfer. Angew Chem Int Ed 2012 ; 51 : 5439–5442. [CrossRef] [Google Scholar]
  18. Kim JH, Frederick RO, Reinen NM, et al. [2Fe-2S]-ferredoxin binds directly to cysteine desulfurase and supplies an electron for iron-sulfur cluster assembly but is displaced by the scaffold protein or bacterial frataxin. J Am Chem Soc 2013 ; 135 : 8117–8120. [CrossRef] [PubMed] [Google Scholar]
  19. Yan R, Konarev PV, Iannuzzi C, et al. Ferredoxin competes with bacterial frataxin in binding to the desulfurase IscS. J Biol Chem 2013 ; 288 : 24777–24787. [CrossRef] [PubMed] [Google Scholar]
  20. Kampinga HH, Craig EA. The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol 2010 ; 11 : 579–592. [CrossRef] [PubMed] [Google Scholar]
  21. Adinolfi S, Iannuzzi C, Prischi F, et al. Bacterial frataxin CyaY is the gatekeeper of iron-sulfur cluster formation catalyzed by IscS. Nat Struct Mol Biol 2009 ; 16 : 390–396. [CrossRef] [PubMed] [Google Scholar]
  22. Pandey A, Golla R, Yoon H, et al. Persulfide formation on mitochondrial cysteine desulfurase: enzyme activation by a eukaryote-specific interacting protein and Fe-S cluster synthesis. Biochem J 2012 ; 448 : 171–187. [CrossRef] [PubMed] [Google Scholar]
  23. Pandey A, Gordon DM, Pain J, et al. Frataxin directly stimulates mitochondrial cysteine desulfurase by exposing substrate-binding sites, and a mutant Fe-S cluster scaffold protein with frataxin-bypassing ability acts similarly. J Biol Chem 2013 ; 288 : 36773–36786. [CrossRef] [PubMed] [Google Scholar]
  24. Tsai CL, Barondeau DP. Human frataxin is an allosteric switch that activates the Fe-S cluster biosynthetic complex. Biochemistry 2010 ; 49 : 9132–9139. [CrossRef] [PubMed] [Google Scholar]
  25. Colin F, Martelli A, Clémancey M, et al. Mammalian frataxin controls sulfur production and iron entry during de novo Fe4S4 cluster assembly. J Am Chem Soc 2013 ; 135 : 733–740. [CrossRef] [PubMed] [Google Scholar]
  26. Yoon H, Golla R, Lesuisse E, et al. Mutation in the Fe-S scaffold protein Isu bypasses frataxin deletion. Biochem J 2012 ; 441 : 473–480. [CrossRef] [PubMed] [Google Scholar]
  27. Schilke B, Williams B, Knieszner H, et al. Evolution of mitochondrial chaperones utilized in Fe-S cluster biogenesis. Curr Biol 2006 ; 16 : 1660–1665. [CrossRef] [PubMed] [Google Scholar]
  28. Vickery LE, Cupp-Vickery JR. Molecular chaperones HscA/Ssq1 and HscB/Jac1 and their roles in iron-sulfur protein maturation. Crit Rev Biochem Mol Biol 2007 ; 42 : 95–111. [CrossRef] [PubMed] [Google Scholar]
  29. Dai Y, Outten FW. The E. coli SufS-SufE sulfur transfer system is more resistant to oxidative stress that IscS-IscU. FEBS Lett 2012 ; 586 : 4016–4022. [CrossRef] [PubMed] [Google Scholar]
  30. Wollers S, Layer G, Garcia-Serres R, et al. Iron-sulfur (Fe-S) cluster assembly: the SufBCD complex is a new type of Fe-S scaffold with a flavin redox cofactor. J Biol Chem 2010 ; 285 : 23331–23341. [CrossRef] [PubMed] [Google Scholar]
  31. Vinella D, Brochier-Armanet C, Loiseau L, et al. Iron-sulfur (Fe/S) protein biogenesis: phylogenomic, genetic studies of A-type carriers. PLoS Genet 2009 ; 5 : e1000497. [CrossRef] [PubMed] [Google Scholar]
  32. Angelini S, Gerez C, Ollagnier-de Choudens S, et al. NfuA, a new factor required for maturing Fe/S proteins in Escherichia coli under oxidative stress and iron starvation conditions. J Biol Chem 2008 ; 283 : 14084–14091. [CrossRef] [PubMed] [Google Scholar]
  33. Py B, Gerez C, Angelini S, et al. Molecular organization, biochemical function, cellular role and evolution of NfuA, an atypical Fe-S carrier. Mol Microbiol 2012 ; 86 : 155–171. [CrossRef] [PubMed] [Google Scholar]
  34. Loiseau L, Gerez C, Bekker M, et al. ErpA, an iron-sulfur (Fe-S) protein of the A-type essential for respiratory metabolism in Escherichia coli. Proc Natl Acad Sci USA 2007 ; 104 : 13626–13631. [CrossRef] [Google Scholar]
  35. Imlay JA. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat Rev Microbiol 2013 ; 11 : 443–454. [CrossRef] [PubMed] [Google Scholar]
  36. Suhasini AN, Brosh RM, Jr. DNA helicases associated with genetic instability, cancer, and aging. Adv Exp Med Biol 2013 ; 767 : 123–144. [CrossRef] [PubMed] [Google Scholar]
  37. Ye H, Rouault TA. Erythropoiesis and iron sulfur cluster biogenesis. Adv Hematol 2010 : 329394. [PubMed] [Google Scholar]
  38. Tan G, Cheng Z, Pang Y, et al. Copper binding in IscA inhibits iron-sulfur cluster assembly in Escherichia coli. Mol Microbiol 2014 ; 93 : 629–644. [PubMed] [Google Scholar]
  39. Jang S, Imlay JA. Hydrogen peroxide inactivates the Escherichia coli Isc iron-sulphur assembly system, and OxyR induces the Suf system to compensate. Mol Microbiol 2010 ; 78 : 1448–1467. [CrossRef] [PubMed] [Google Scholar]
  40. Lim JG, Choi SH. IscR is a global regulator essential for pathogenesis of Vibrio vulnificus and induced by host cells. Infect Immun 2014 ; 82 : 569–578. [CrossRef] [PubMed] [Google Scholar]
  41. Wong SM, Bernui M, Shen H, et al. Genome-wide fitness profiling reveals adaptations required by Haemophilus in coinfection with influenza A virus in the murine lung. Proc Natl Acad Sci USA 2013 ; 110 : 15413–15418. [CrossRef] [Google Scholar]
  42. Farhan SM, Wang J, Robinson JF, et al. Exome sequencing identifies NFS1 deficiency in a novel Fe-S cluster disease, infantile mitochondrial complex II/III deficiency. Mol Genet Genomic Med 2014 ; 2 : 73–80. [CrossRef] [PubMed] [Google Scholar]
  43. Koeppen AH. Friedreich’s ataxia: pathology, pathogenesis, and molecular genetics. J Neurol Sci 2011 ; 303 : 1–12. [CrossRef] [PubMed] [Google Scholar]
  44. Martelli A, Napierala M, Puccio H. Understanding the genetic and molecular pathogenesis of Friedreich’s ataxia through animal and cellular models. Dis Model Mech 2012 ; 5 : 165–176. [CrossRef] [PubMed] [Google Scholar]
  45. Saha PP, Kumar SK, Srivastava S, et al. The presence of multiple cellular defects associated with a novel G50E iron-sulfur cluster scaffold protein (ISCU) mutation leads to development of mitochondrial myopathy. J Biol Chem 2014 ; 289 : 10359–10377. [CrossRef] [PubMed] [Google Scholar]
  46. Lim SC, Friemel M, Marum JE, et al. Mutations in LYRM4, encoding iron-sulfur cluster biogenesis factor ISD11, cause deficiency of multiple respiratory chain complexes. Hum Mol Genet 2013 ; 22 : 4460–4473. [CrossRef] [PubMed] [Google Scholar]
  47. Ezraty B, Vergnes A, Banzhaf M, et al. Fe-S cluster biosynthesis controls uptake of aminoglycosides in a ROS-less death pathway. Science 2013 ; 340 : 1583–1587. [CrossRef] [PubMed] [Google Scholar]
  48. Damper PD, Epstein W. Role of the membrane potential in bacterial resistance to aminoglycoside antibiotics. Antimicrob Agents Chemother 1981 ; 20 : 803–808. [CrossRef] [PubMed] [Google Scholar]
  49. Mates SM, Eisenberg ES, Mandel LJ, et al. Membrane potential and gentamicin uptake in Staphylococcus aureus. Proc Natl Acad Sci USA 1982 ; 79 : 6693–6697. [CrossRef] [Google Scholar]
  50. Bryan LE, Kwan S. Roles of ribosomal binding, membrane potential, and electron transport in bacterial uptake of streptomycin and gentamicin. Antimicrob Agents Chemother 1983 ; 23 : 835–845. [CrossRef] [PubMed] [Google Scholar]
  51. Taber HW, Mueller JP, Miller PF, et al. Bacterial uptake of aminoglycoside antibiotics. Microbiol Rev 1987 ; 51 : 439–457. [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.