Accès gratuit
Numéro
Med Sci (Paris)
Volume 30, Numéro 12, Décembre 2014
Page(s) 1101 - 1109
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20143012013
Publié en ligne 24 décembre 2014
  1. Sarzi E, Rötig A. Instabilité du génome mitochondrial et pathologies associées. Med Sci (Paris) 2010 ; 26 : 171–176. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  2. Lenaers G, Amati-Bonneau P, Delettre C, et al. De la levure aux maladies neuro-dégénératives. Med Sci (Paris) 2010 ; 26 : 836–841. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  3. Voisset C, Blondel M. Chémobiologie à l’happy hour : la levure comme modèle de criblage pharmacologique. Med Sci (Paris) 2014 ; 30 : 1161–1168. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  4. Kucharczyk R, Rak M, di Rago JP. Biochemical consequences in yeast of the human mitochondrial DNA 8993T>C mutation in the ATPase6 gene found in NARP/MILS patients. Biochim Biophys Acta 2009 ; 1793 : 817–824. [CrossRef] [PubMed] [Google Scholar]
  5. Montanari A, Zhou YF, D’Orsi MF, et al. Analyzing the suppression of respiratory defects in the yeast model of human mitochondrial tRNA diseases. Gene 2013 ; 527 : 1–9. [CrossRef] [PubMed] [Google Scholar]
  6. Coulombel L. Reprogrammation nucléaire d’une cellule différenciée : on efface tout et on recommence. Med Sci (Paris) 2007 ; 23 : 667–670. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  7. King MP, Attardi G. Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science 1989 ; 246 : 500–503. [CrossRef] [PubMed] [Google Scholar]
  8. Swerdlow RH. Mitochondria in cybrids containing mtDNA from persons with mitochondriopathies. J Neurosci Res 2007 ; 85 : 3416–3428. [CrossRef] [PubMed] [Google Scholar]
  9. Qiang B, Hamamah S, De Vos J. iPS : des erreurs de jeunesse ? Med Sci (Paris) 2011 ; 27 : 805–807. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  10. Jenuth JP, Peterson AC, Shoubridge EA. Tissue-specific selection for different mtDNA genotypes in heteroplasmic mice. Nat Genet 1997 ; 16 : 93–95. [CrossRef] [PubMed] [Google Scholar]
  11. Nakada K, Hayashi J. Transmitochondrial mice as models for mitochondrial DNA-based diseases. Exp Anim 2011 ; 60 : 421–431. [CrossRef] [PubMed] [Google Scholar]
  12. Trifunovic A, Wredenberg A, Falkenberg M, et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 2004 ; 429 : 417–423. [CrossRef] [PubMed] [Google Scholar]
  13. Tyynismaa H, Mjosund KP, Wanrooij S, et al. Mutant mitochondrial helicase Twinkle causes multiple mtDNA deletions and a late-onset mitochondrial disease in mice. Proc Natl Acad Sci USA 2005 ; 102 : 17687–17692. [CrossRef] [Google Scholar]
  14. Larsson NG, Wang J, Wilhelmsson H, et al. Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice [see comments]. Nat Genet 1998 ; 18 : 231–236. [CrossRef] [PubMed] [Google Scholar]
  15. Brown DT, Herbert M, Lamb VK, et al. Transmission of mitochondrial DNA disorders: possibilities for the future. Lancet 2006 ; 368 : 87–89. [CrossRef] [PubMed] [Google Scholar]
  16. Fulka J, Jr, Fulka H, John JC. Transmission of mitochondrial DNA disorders: possibilities for the elimination of mutated mitochondria. Cloning Stem Cells 2007 ; 9 : 47–50. [CrossRef] [PubMed] [Google Scholar]
  17. Hafner S, Coulombel L. Naissance de Mito et Tracker. Med Sci (Paris) 2009 ; 25 : 802–803. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  18. Craven L, Tuppen HA, Greggains GD, et al. Pronuclear transfer in human embryos to prevent transmission of mitochondrial DNA disease. Nature 2010 ; 465 : 82–85. [CrossRef] [PubMed] [Google Scholar]
  19. Steffann J, Gigarel N, Samuels DC, et al. Data from artificial models of mitochondrial DNA disorders are not always applicable to humans. Cell Rep 2014 ; 7 : 933–934. [CrossRef] [PubMed] [Google Scholar]
  20. Santra S, Gilkerson RW, Davidson M, Schon EA. Ketogenic treatment reduces deleted mitochondrial DNAs in cultured human cells. Ann Neurol 2004 ; 56 : 662–669. [CrossRef] [PubMed] [Google Scholar]
  21. Noh HS, Kim YS, Choi WS. Neuroprotective effects of the ketogenic diet. Epilepsia 2008 ; 49 Suppl 8 : 120–123. [CrossRef] [PubMed] [Google Scholar]
  22. Ahola-Erkkila S, Carroll CJ, Peltola-Mjosund K, et al. Ketogenic diet slows down mitochondrial myopathy progression in mice. Hum Mol Genet 2010 ; 19 : 1974–1984. [CrossRef] [PubMed] [Google Scholar]
  23. Hawke TJ, Garry DJ. Myogenic satellite cells: physiology to molecular biology. J Appl Physiol 2001 ; 91 : 534–551. [PubMed] [Google Scholar]
  24. Andrews RM, Griffiths PG, Chinnery PF, Turnbull DM. Evaluation of bupivacaine-induced muscle regeneration in the treatment of ptosis in patients with chronic progressive external ophthalmoplegia and Kearns-Sayre syndrome. Eye (Lond) 1999 ; 13 : 769–772. [CrossRef] [PubMed] [Google Scholar]
  25. Alexeyev MF, Venediktova N, Pastukh V, et al. Selective elimination of mutant mitochondrial genomes as therapeutic strategy for the treatment of NARP and MILS syndromes. Gene Ther 2008 ; 15 : 516–523. [CrossRef] [PubMed] [Google Scholar]
  26. Bacman SR, Williams SL, Garcia S, Moraes CT. Organ-specific shifts in mtDNA heteroplasmy following systemic delivery of a mitochondria-targeted restriction endonuclease. Gene Ther 2010 ; 17 : 713–720. [CrossRef] [PubMed] [Google Scholar]
  27. Klug A. The discovery of zinc fingers and their applications in gene regulation and genome manipulation. Annu Rev Biochem 2010 ; 79 : 213–231. [CrossRef] [PubMed] [Google Scholar]
  28. Minczuk M, Papworth MA, Miller JC, et al. Development of a single-chain, quasi-dimeric zinc-finger nuclease for the selective degradation of mutated human mitochondrial DNA. Nucleic Acids Res 2008 ; 36 : 3926–3938. [CrossRef] [PubMed] [Google Scholar]
  29. Dupret B, Angrand PO. L’ingénierie des génomes par les TALEN. Med Sci (Paris) 2014 ; 30 : 186–193. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  30. Bacman SR, Williams SL, Pinto M, et al. Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nat Med 2013 ; 19 : 1111–1113. [CrossRef] [PubMed] [Google Scholar]
  31. Taylor RW, Chinnery PF, Turnbull DM, Lightowlers RN. Selective inhibition of mutant human mitochondrial DNA replication in vitro by peptide nucleic acids. Nat Genet 1997 ; 15 : 212–215. [CrossRef] [PubMed] [Google Scholar]
  32. Comte C, Tonin Y, Heckel-Mager AM, et al. Mitochondrial targeting of recombinant RNAs modulates the level of a heteroplasmic mutation in human mitochondrial DNA associated with Kearns Sayre Syndrome. Nucleic Acids Res 2013 ; 41 : 418–433. [CrossRef] [PubMed] [Google Scholar]
  33. Tonin Y, Heckel AM, Vysokikh M, et al. Modeling of antigenomic therapy of mitochondrial diseases by mitochondrially addressed RNA targeting a pathogenic point mutation in mitochondrial DNA. J Biol Chem 2014 ; 289 : 13323–13334. [CrossRef] [PubMed] [Google Scholar]
  34. Gray RE, Law RH, Devenish RJ, Nagley P. Allotopic expression of mitochondrial ATP synthase genes in nucleus of Saccharomyces cerevisiae. Methods Enzymol 1996 ; 264 : 369–389. [CrossRef] [PubMed] [Google Scholar]
  35. Perales-Clemente E, Fernandez-Silva P, Acin-Perez R, et al. Allotopic expression of mitochondrial-encoded genes in mammals: achieved goal, undemonstrated mechanism or impossible task?. Nucleic Acids Res 2010 ; 39 : 225–234. [CrossRef] [PubMed] [Google Scholar]
  36. Bonnet C, Augustin S, Ellouze S, et al. The optimized allotopic expression of ND1 or ND4 genes restores respiratory chain complex I activity in fibroblasts harboring mutations in these genes. Biochim Biophys Acta 2008 ; 1783 : 1707–1717. [CrossRef] [PubMed] [Google Scholar]
  37. Kolesnikova OA, Entelis NS, Jacquin-Becker C, et al. Nuclear DNA-encoded tRNAs targeted into mitochondria can rescue a mitochondrial DNA mutation associated with the MERRF syndrome in cultured human cells. Hum Mol Genet 2004 ; 13 : 2519–2534. [CrossRef] [PubMed] [Google Scholar]
  38. Karicheva OZ, Kolesnikova OA, Schirtz T, et al. Correction of the consequences of mitochondrial 3243A>G mutation in the MT-TL1 gene causing the MELAS syndrome by tRNA import into mitochondria. Nucleic Acids Res 2011 ; 39 : 8173–8186. [CrossRef] [PubMed] [Google Scholar]
  39. Belostotsky R, Frishberg Y, Entelis N. Human mitochondrial tRNA quality control in health and disease: A channeling mechanism?. RNA Biol 2012 ; 9 : 33–39. [CrossRef] [PubMed] [Google Scholar]
  40. Li R, Guan MX. Human mitochondrial leucyl-tRNA synthetase corrects mitochondrial dysfunctions due to the tRNALeu(UUR) A3243G mutation, associated with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like symptoms and diabetes. Mol Cell Biol 2010 ; 30 : 2147–2154. [CrossRef] [PubMed] [Google Scholar]
  41. Hornig-Do HT, Montanari A, Rozanska A, et al. Human mitochondrial leucyl tRNA synthetase can suppress non cognate pathogenic mt-tRNA mutations. EMBO Mol Med 2014 ; 6 : 183–193. [PubMed] [Google Scholar]
  42. Ibrahim N, Handa H, Cosset A, et al. DNA delivery to mitochondria: Sequence specificity and energy enhancement. Pharm Res 2011 ; 28 : 2871–2882. [CrossRef] [PubMed] [Google Scholar]
  43. Wang G, Shimada E, Zhang J, et al. Correcting human mitochondrial mutations with targeted RNA import. Proc Natl Acad Sci USA 2012 ; 109 : 4840–4845. [CrossRef] [Google Scholar]
  44. Pfeffer G, Majamaa K, Turnbull DM, et al. Treatment for mitochondrial disorders. Cochrane Database Syst Rev 2012 ; 4 : CD004426. [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.