Free Access
Issue
Med Sci (Paris)
Volume 30, Number 11, Novembre 2014
Cils primaires et ciliopathies
Page(s) 1034 - 1039
Section Cils primaires et ciliopathies
DOI https://doi.org/10.1051/medsci/20143011018
Published online 10 November 2014
  1. Davenport JR, Yoder BK. An incredible decade for the primary cilium : a look at a once-forgotten organelle. Am J Physiol Renal Physiol 2005 ; 289 : F1159–F1169. [CrossRef] [PubMed] [Google Scholar]
  2. Basten SG, Giles RH., Functional aspects of primary cilia in signaling, cell cycle, tumorigenesis. Cilia 2013 ; 2 : 6. [CrossRef] [PubMed] [Google Scholar]
  3. Yuan S, Sun Z. Expanding horizons : ciliary proteins reach beyond cilia. Annu Rev Genet 2013 ; 47 : 353–376. [CrossRef] [PubMed] [Google Scholar]
  4. Satir P, Pedersen LB, Christensen ST. The primary cilium at a glance. J Cell Sci 2010 ; 123 : 499–503. [CrossRef] [PubMed] [Google Scholar]
  5. Kim S, Tsiokas L. Cilia and cell cycle re-entry More than a coincidence. Cell Cycle 2011 ; 10 : 2683–2690. [CrossRef] [PubMed] [Google Scholar]
  6. Goto H, Inoko A, Inagaki M. Cell cycle progression by the repression of primary cilia formation in proliferating cells. Cell Mol Life Sci 2013 ; 70 : 3893–3905. [CrossRef] [PubMed] [Google Scholar]
  7. Snell WJ, Pan J, Wang Q. Cilia and flagella revealed : from flagellar assembly in Chlamydomonas to human obesity disorders. Cell 2004 ; 117 : 693–697. [CrossRef] [PubMed] [Google Scholar]
  8. Ishikawa H, Marshall WF. Ciliogenesis : building the cell’s antenna. Nat Rev Mol Cell Biol 2011 ; 12 : 222–234. [CrossRef] [PubMed] [Google Scholar]
  9. Afzelius BA. Cilia-related diseases. J Pathol 2004 ; 204 : 470–477. [CrossRef] [PubMed] [Google Scholar]
  10. Marshall WF. The cell biological basis of ciliary disease. J Cell Biol 2008 ; 180 : 17–21. [CrossRef] [PubMed] [Google Scholar]
  11. Badano JL, Mitsuma N, Beales PL, Katsanis N. The ciliopathies : an emerging class of human genetic disorders. Annu Rev Genomics Hum Genet 2006 ; 7 : 125–148. [Google Scholar]
  12. Hildebrandt F, Benzing T, Katsanis N. Ciliopathies. N Engl J Med 2011 ; 364 : 1533–1543. [CrossRef] [PubMed] [Google Scholar]
  13. Mykytyn K, Nishimura DY, Searby CC, et al. Identification of the gene (BBS1) most commonly involved in Bardet-Biedl syndrome, a complex human obesity syndrome. Nat Genet 2002 ; 31 : 435–438. [PubMed] [Google Scholar]
  14. Nishimura DY, Searby CC, Carmi R, et al. Positional cloning of a novel gene on chromosome 16q causing Bardet-Biedl syndrome (BBS2). Hum Mol Genet 2001 ; 10 : 865–874. [CrossRef] [PubMed] [Google Scholar]
  15. Chiang AP, Nishimura D, Searby C, et al. Comparative genomic analysis identifies an ADP-ribosylation factor-like gene as the cause of Bardet-Biedl syndrome (BBS3). Am J Hum Genet 2004 ; 75 : 475–484. [CrossRef] [PubMed] [Google Scholar]
  16. Mykytyn K, Braun T, Carmi R, et al. Identification of the gene that, when mutated, causes the human obesity syndrome BBS4. Nat Genet 2001 ; 28 : 188–191. [CrossRef] [PubMed] [Google Scholar]
  17. Li JB, Gerdes JM, Haycraft CJ, et al. Comparative genomics identifies a flagellar and basal body proteome that includes the BBS5 human disease gene. Cell 2004 ; 117 : 541–552. [CrossRef] [PubMed] [Google Scholar]
  18. Stone DL, Slavotinek A, Bouffard GG, et al. Mutation of a gene encoding a putative chaperonin causes McKusick-Kaufman syndrome. Nat Genet 2000 ; 25 : 79–82. [CrossRef] [PubMed] [Google Scholar]
  19. Badano JL, Ansley SJ, Leitch CC, et al. Identification of a novel Bardet-Biedl syndrome protein, BBS7, that shares structural features with BBS1 and BBS2. Am J Hum Genet 2003 ; 72 : 650–658. [CrossRef] [PubMed] [Google Scholar]
  20. Ansley SJ, Badano JL, Blacque OE, et al. Basal body dysfunction is a likely cause of pleiotropic Bardet-Biedl syndrome. Nature 2003 ; 425 : 628–633. [CrossRef] [PubMed] [Google Scholar]
  21. Nishimura DY, Swiderski RE, Searby CC, et al. Comparative genomics and gene expression analysis identifies BBS9, a new Bardet-Biedl syndrome gene. Am J Hum Genet 2005 ; 77 : 1021–1033. [CrossRef] [PubMed] [Google Scholar]
  22. Stoetzel C, Laurier V, Davis EE, et al. BBS10 encodes a vertebrate-specific chaperonin-like protein and is a major BBS locus. Nat Genet 2006 ; 38 : 521–524. [CrossRef] [PubMed] [Google Scholar]
  23. Chiang AP, Beck JS, Yen HJ, et al. Homozygosity mapping with SNP arrays identifies TRIM32, an E3 ubiquitin ligase, as a Bardet-Biedl syndrome gene (BBS11). Proc Natl Acad Sci USA 2006 ; 103 : 6287–6292. [CrossRef] [Google Scholar]
  24. Stoetzel C, Muller J, Laurier V, et al. Identification of a novel BBS gene (BBS12) highlights the major role of a vertebrate-specific branch of chaperonin-related proteins in Bardet-Biedl syndrome. Am J Hum Genet 2007 ; 80 : 1–11. [CrossRef] [PubMed] [Google Scholar]
  25. Leitch CC, Zaghloul NA, Davis EE, et al. Hypomorphic mutations in syndromic encephalocele genes are associated with Bardet-Biedl syndrome. Nat Genet 2008 ; 40 : 443–448. [CrossRef] [PubMed] [Google Scholar]
  26. Sayer JA, Otto EA, O’Toole JF, et al. The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4. Nat Genet 2006 ; 38 : 674–681. [CrossRef] [PubMed] [Google Scholar]
  27. Kim SK, Shindo A, Park TJ, et al. Planar cell polarity acts through septins to control collective cell movement and ciliogenesis. Science 2010 ; 329 : 1337–1340. [CrossRef] [PubMed] [Google Scholar]
  28. Otto EA, Hurd TW, Airik R, et al. Candidate exome capture identifies mutation of SDCCAG8 as the cause of a retinal-renal ciliopathy. Nat Genet 2010 ; 42 : 840–850. [CrossRef] [PubMed] [Google Scholar]
  29. Marion V, Stutzmann F, Gérard M, et al. Exome sequencing identifies mutations in LZTFL1, a BBSome and smoothened trafficking regulator, in a family with Bardet-Biedl syndrome with situs inversus and insertional polydactyly. J Med Genet 2012 ; 49 : 317–321. [CrossRef] [PubMed] [Google Scholar]
  30. Scheidecker S, Etard C, Pierce NW, et al. Exome sequencing of Bardet-Biedl syndrome patient identifies a null mutation in the BBSome subunit BBIP1 (BBS18). J Med Genet 2014 ; 51 : 132–136. [CrossRef] [PubMed] [Google Scholar]
  31. Aldahmesh MA, Li Y, Alhashem A, et al. IFT27, encoding a small GTPase component of IFT particles, is mutated in a consanguineous family with Bardet-Biedl syndrome. Hum Mol Genet 2014 ; 23 : 3307–3315. [CrossRef] [PubMed] [Google Scholar]
  32. Collin GB, Marshall JD, Ikeda A, et al. Mutations in ALMS1 cause obesity, type 2 diabetes and neurosensory degeneration in Alström syndrome. Nat Genet 2002 ; 31 : 74–78. [PubMed] [Google Scholar]
  33. Gupta Sen P, Prodromou NV, Chapple JP. Can faulty antennae increase adiposity? The link between cilia proteins and obesity. J Endocrinol 2009 ; 203 : 327–336. [CrossRef] [PubMed] [Google Scholar]
  34. Mok CA, Héon E, Zhen M. Ciliary dysfunction and obesity. Clin Genet 2010 ; 77 : 18–27. [CrossRef] [PubMed] [Google Scholar]
  35. Ng M, Fleming T, Robinson M, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013 : a systematic analysis for the Global burden of disease study 2013. Lancet 2014 ; 384 : 766–781. [CrossRef] [PubMed] [Google Scholar]
  36. Barness LA, Opitz JM, Gilbert Barness E. Obesity : genetic, molecular, and environmental aspects. Am J Med Genet A 2007 ; 143A : 3016–3034. [CrossRef] [PubMed] [Google Scholar]
  37. Bell CG, Walley AJ, Froguel P. The genetics of human obesity. Nat Rev Genet 2005 ; 6 : 221–234. [CrossRef] [PubMed] [Google Scholar]
  38. Bardet G. On congenital obesity syndrome with polydactyly and retinitis pigmentosa (a contribution to the study of clinical forms of hypophyseal obesity 1920). Obes Res 1995 ; 3 : 387–399. [CrossRef] [PubMed] [Google Scholar]
  39. Morton GJ, Meek TH, Schwartz MW. Neurobiology of food intake in health and disease. Nat Rev Neurosci 2014 ; 15 : 367–378. [CrossRef] [PubMed] [Google Scholar]
  40. Broberger C, Johansen J, Johansson C, Schalling M, Hökfelt T. The neuropeptide Y/agouti gene-related protein (AGRP) brain circuitry in normal, anorectic, and monosodium glutamate-treated mice. Proc Natl Acad Sci USA 1998 ; 95 : 15043–15048. [CrossRef] [Google Scholar]
  41. Hahn TM, Breininger JF, Baskin DG, Schwartz MW. Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. Nat Neurosci 1998 ; 1 : 271–272. [CrossRef] [PubMed] [Google Scholar]
  42. Cowley MA, Smart JL, Rubinstein M, et al. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 2001 ; 411 : 480–484. [CrossRef] [PubMed] [Google Scholar]
  43. Carmi R, Elbedour K, Stone EM, Sheffield VC. Phenotypic differences among patients with Bardet-Biedl syndrome linked to three different chromosome loci. Am J Med Genet 1995 ; 59 : 199–203. [CrossRef] [PubMed] [Google Scholar]
  44. Rahmouni K, Fath MA, Seo S, et al. Leptin resistance contributes to obesity and hypertension in mouse models of Bardet-Biedl syndrome. J Clin Invest 2008 ; 118 : 1458–1467. [CrossRef] [PubMed] [Google Scholar]
  45. Seo S, Guo D-F, Bugge K, et al. Requirement of Bardet-Biedl syndrome proteins for leptin receptor signaling. Hum Mol Genet 2009 ; 18 : 1323–1331. [CrossRef] [PubMed] [Google Scholar]
  46. Berbari NF, Lewis JS, Bishop GA, Askwith CC, Mykytyn K. Bardet-Biedl syndrome proteins are required for the localization of G protein-coupled receptors to primary cilia. Proc Natl Acad Sci USA 2008 ; 105 : 4242–4246. [CrossRef] [Google Scholar]
  47. Farooqi IS, Jebb SA, Langmack G, et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N Engl J Med 1999 ; 341 : 879–884. [CrossRef] [PubMed] [Google Scholar]
  48. Marion V, Stoetzel C, Schlicht D, et al. Transient ciliogenesis involving Bardet-Biedl syndrome proteins is a fundamental characteristic of adipogenic differentiation. Proc Natl Acad Sci USA 2009 ; 106 : 1820–1825. [CrossRef] [Google Scholar]
  49. Aksanov O, Green P, Birk RZ. BBS4 directly affects proliferation and differentiation of adipocytes. Cell Mol Life Sci 2014 ; 71 : 3381–3392. [CrossRef] [PubMed] [Google Scholar]
  50. Berbari NF, Pasek RC, Malarkey EB, et al. Leptin resistance is a secondary consequence of the obesity in ciliopathy mutant mice. Proc Natl Acad Sci USA 2013 ; 110 : 7796–7801. [CrossRef] [Google Scholar]
  51. Loktev AV, Jackson PK. Neuropeptide Y family receptors traffic via the Bardet-Biedl syndrome pathway to signal in neuronal primary cilia. Cell Rep 2013 ; 5 : 1316–1329. [CrossRef] [PubMed] [Google Scholar]
  52. Loos RJ, Yeo GS. The bigger picture of FTO–the first GWAS-identified obesity gene. Nat Rev Endocrinol 2014 ; 10 : 51–61. [CrossRef] [PubMed] [Google Scholar]
  53. Bochukova EG, Huang N, Keogh J, et al. Large, rare chromosomal deletions associated with severe early-onset obesity. Nature 2010 ; 463 : 666–670. [CrossRef] [PubMed] [Google Scholar]
  54. Lavebratt C, Almgren M, Ekström TJ. Epigenetic regulation in obesity. Int J Obes (Lond) 2012 ; 36 : 757–765. [CrossRef] [PubMed] [Google Scholar]
  55. Ortega FJ, Mercader JM, Catalán V, et al. Targeting the circulating microRNA signature of obesity. Clin Chem 2013 ; 59 : 781–792. [CrossRef] [PubMed] [Google Scholar]
  56. David Brockman XC. Proteomics in the characterization of adipose dysfunction in obesity. Adipocyte 2012 ; 1 : 25–37. [CrossRef] [PubMed] [Google Scholar]
  57. Xie B, Waters MJ, Schirra HJ., Investigating potential mechanisms of obesity by metabolomics. J Biomed Biotechnol 2012 ; 2012 : 805683. [PubMed] [Google Scholar]
  58. Li F, Jiang C, Larsen MC, et al. Lipidomics reveals a link between CYP1B1 and SCD1 in promoting obesity. J Proteome Res 2014 ; 13 : 2679–2687. [CrossRef] [PubMed] [Google Scholar]
  59. Dahlman I, Elsen M, Tennagels N, et al. Functional annotation of the human fat cell secretome. Arch Physiol Biochem 2012 ; 118 : 84–91. [CrossRef] [PubMed] [Google Scholar]
  60. Malpique R, Figueiredo H, Esteban Y, et al. Integrative analysis reveals novel pathways mediating the interaction between adipose tissue and pancreatic islets in obesity in rats. Diabetologia 2014 ; 57 : 1219–1231. [CrossRef] [PubMed] [Google Scholar]
  61. Kurland IJ, Accili D, Burant C, et al. Application of combined omics platforms to accelerate biomedical discovery in diabesity. Ann NY Acad Sci 2013 ; 1287 : 1–16. [CrossRef] [Google Scholar]
  62. Forsythe P, Kunze WA. Voices from within : gut microbes and the CNS. Cell Mol Life Sci 2013 ; 70 : 55–69. [CrossRef] [PubMed] [Google Scholar]
  63. Stevens A, De Leonibus C, Hanson D, et al. Network analysis : a new approach to study endocrine disorders. J Mol Endocrinol 2014 ; 52 : R79–R93. [CrossRef] [PubMed] [Google Scholar]
  64. Meng Q, Mäkinen VP, Luk H, Yang X. Systems biology approaches and applications in obesity, diabetes, and cardiovascular diseases. Curr Cardiovasc Risk Rep 2013 ; 7 : 73–81. [CrossRef] [PubMed] [Google Scholar]
  65. Delgehyr N, Spassky N. Cil primaire, cycle cellulaire et prolifération. Med Sci (Paris) 2014 ; 30 : 976–979. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  66. Paces-Fessy M. Cils et kystes rénaux. Med Sci (Paris) 2014 ; 30 : 1024–1033. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  67. Ezan J, Montcouquiol M. Les liens multiples entre les cils et la polarité planaire cellulaire. Med Sci (Paris) 2014 ; 30 : 1004–1010. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  68. Bachmann-Gagescu R. Complexité génétique des ciliopathies et identification de nouveaux gènes. Med Sci (Paris) 2014 ; 30 : 1011–1023. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  69. Fort C, Bastin P. Élongation de l’axonème et dynamique du transport intraflagellaire. Med Sci (Paris) 2014 ; 30 : 955–961. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.