Free Access
Med Sci (Paris)
Volume 30, Number 11, Novembre 2014
Cils primaires et ciliopathies
Page(s) 1040 - 1046
Section Cils primaires et ciliopathies
Published online 10 November 2014
  1. Hildebrandt F, Benzing T, Katsanis N. Ciliopathies. N Engl J Med 2011 ; 364 : 1533–1543. [CrossRef] [PubMed] [Google Scholar]
  2. Zaghloul NA, Katsanis N. Functional modules, mutational load and human genetic disease. Trends Genet 2010 ; 26 : 168–176. [CrossRef] [PubMed] [Google Scholar]
  3. Ishikawa H, Thompson J, Yates JR, et al. Proteomic analysis of mammalian primary cilia. Curr Biol 2012 ; 22 : 414–419. [CrossRef] [PubMed] [Google Scholar]
  4. Rosenbaum JL, Witman GB. Intraflagellar transport. Nat Rev Mol Cell Biol 2002 ; 3 : 813–825. [CrossRef] [PubMed] [Google Scholar]
  5. Huangfu D, Liu A, Rakeman AS, et al. Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 2003 ; 426 : 83–87. [CrossRef] [PubMed] [Google Scholar]
  6. Jurczyk A, Gromley A, Redick S, et al. Pericentrin forms a complex with intraflagellar transport proteins and polycystin-2 and is required for primary cilia assembly. J Cell Biol 2004 ; 166 : 637–643. [CrossRef] [PubMed] [Google Scholar]
  7. Ahmed NT, Gao C, Lucker BF, et al. ODA16 aids axonemal outer row dynein assembly through an interaction with the intraflagellar transport machinery. J Cell Biol 2008 ; 183 : 313–322. [CrossRef] [PubMed] [Google Scholar]
  8. Sedmak T, Wolfrum U. Intraflagellar transport molecules in ciliary and nonciliary cells of the retina. J Cell Biol 2010 ; 189 : 171–186. [CrossRef] [PubMed] [Google Scholar]
  9. Finetti F, Patrussi L, Masi G, et al. Specific recycling receptors are targeted to the immune synapse by the intraflagellar transport system. J Cell Sci 2014 ; 127 : 1924–1937. [CrossRef] [PubMed] [Google Scholar]
  10. Finetti F, Paccani SR, Riparbelli MG, et al. Intraflagellar transport is required for polarized recycling of the TCR/CD3 complex to the immune synapse. Nat Cell Biol 2009 ; 11 : 1332–1339. [CrossRef] [PubMed] [Google Scholar]
  11. Omran H, Kobayashi D, Olbrich H, et al. Ktu/PF13 is required for cytoplasmic pre-assembly of axonemal dyneins. Nature 2008 ; 456 : 611–616. [CrossRef] [PubMed] [Google Scholar]
  12. Kim JC, Badano JL, Sibold S, et al. The Bardet-Biedl protein BBS4 targets cargo to the pericentriolar region and is required for microtubule anchoring and cell cycle progression. Nat Genet 2004 ; 36 : 462–470. [CrossRef] [PubMed] [Google Scholar]
  13. Spassky N, Han YG, Aguilar A, et al. Primary cilia are required for cerebellar development and Shh-dependent expansion of progenitor pool. Dev Biol 2008 ; 317 : 246–259. [CrossRef] [PubMed] [Google Scholar]
  14. Delaval B, Bright A, Lawson ND, et al. The cilia protein IFT88 is required for spindle orientation in mitosis. Nat Cell Biol 2011 ; 13 : 461–468. [CrossRef] [PubMed] [Google Scholar]
  15. Qin H, Wang Z, Diener D, et al. Intraflagellar transport protein 27 is a small G protein involved in cell-cycle control. Curr Biol 2007 ; 17 : 193–202. [CrossRef] [PubMed] [Google Scholar]
  16. Plotnikova OV, Golemis EA, Pugacheva EN. Cell cycle-dependent ciliogenesis and cancer. Cancer Res 2008 ; 68 : 2058–2061. [CrossRef] [PubMed] [Google Scholar]
  17. Mikule K, Delaval B, Kaldis P, et al. Loss of centrosome integrity induces p38–p53-p21-dependent G1-S arrest. Nat Cell Biol 2007 ; 9 : 160–170. [CrossRef] [PubMed] [Google Scholar]
  18. Robert A, Margall-Ducos G, Guidotti JE, et al. The intraflagellar transport component IFT88/polaris is a centrosomal protein regulating G1-S transition in non-ciliated cells. J Cell Sci 2007 ; 120 : 628–637. [CrossRef] [PubMed] [Google Scholar]
  19. Isfort RJ, Cody DB, Doersen CJ, et al. The tetratricopeptide repeat containing Tg737 gene is a liver neoplasia tumor suppressor gene. Oncogene 1997 ; 15 : 1797–1803. [CrossRef] [PubMed] [Google Scholar]
  20. Richards WG, Yoder BK, Isfort RJ, et al. Oval cell proliferation associated with the murine insertional mutation TgN737Rpw. Am J Pathol 1996 ; 149 : 1919–1930. [PubMed] [Google Scholar]
  21. Li X, Luo Y, Starremans PG, et al. Polycystin-1 and polycystin-2 regulate the cell cycle through the helix-loop-helix inhibitor Id2. Nat Cell Biol 2005 ; 7 : 1202–1212. [CrossRef] [PubMed] [Google Scholar]
  22. Patel V, Li L, Cobo-Stark P, et al. Acute kidney injury and aberrant planar cell polarity induce cyst formation in mice lacking renal cilia. Hum Mol Genet 2008 ; 17 : 1578–1590. [CrossRef] [PubMed] [Google Scholar]
  23. Jonassen JA, San Agustin J, Follit JA, et al. Deletion of IFT20 in the mouse kidney causes misorientation of the mitotic spindle and cystic kidney disease. J Cell Biol 2008 ; 183 : 377–384. [CrossRef] [PubMed] [Google Scholar]
  24. Luyten A, Su X, Gondela S, et al. Aberrant regulation of planar cell polarity in polycystic kidney disease. J Am Soc Nephrol 2010 ; 21 : 1521–1532. [CrossRef] [PubMed] [Google Scholar]
  25. Fischer E, Legue E, Doyen A, et al. Defective planar cell polarity in polycystic kidney disease. Nat Genet 2006 ; 38 : 21–23. [CrossRef] [PubMed] [Google Scholar]
  26. Borovina A, Ciruna B. IFT88 plays a cilia- and PCP-independent role in controlling oriented cell divisions during vertebrate embryonic development. Cell Rep 2013 ; 5 : 37–43. [CrossRef] [PubMed] [Google Scholar]
  27. Wood CR, Wang Z, Diener D, et al. IFT proteins accumulate during cell division, localize to the cleavage furrow in Chlamydomonas. PloS One 2012 ; 7 : e30729. [CrossRef] [PubMed] [Google Scholar]
  28. Aboualaiwi WA, Muntean BS, Ratnam S, et al. Survivin-induced abnormal ploidy contributes to cystic kidney and aneurysm formation. Circulation 2014 ; 129 : 660–672. [CrossRef] [PubMed] [Google Scholar]
  29. AbouAlaiwi WA, Ratnam S, Booth RL, et al. Endothelial cells from humans and mice with polycystic kidney disease are characterized by polyploidy and chromosome segregation defects through survivin down-regulation. Hum Mol Genet 2011 ; 20 : 354–367. [CrossRef] [PubMed] [Google Scholar]
  30. Zhang J, Wu M, Wang S, et al. Polycystic kidney disease protein fibrocystin localizes to the mitotic spindle and regulates spindle bipolarity. Hum Mol Genet 2010 ; 19 : 3306–3319. [CrossRef] [PubMed] [Google Scholar]
  31. Haraguchi K, Hayashi T, Jimbo T, et al. Role of the kinesin-2 family protein, KIF3, during mitosis. J Biol Chem 2006 ; 281 : 4094–4099. [CrossRef] [PubMed] [Google Scholar]
  32. Burtey S, Riera M, Ribe E, et al. Centrosome overduplication and mitotic instability in PKD2 transgenic lines. Cell Biol Int 2008 ; 32 : 1193–1198. [CrossRef] [PubMed] [Google Scholar]
  33. Battini L, Macip S, Fedorova E, et al. Loss of polycystin-1 causes centrosome amplification and genomic instability. Hum Mol Genet 2008 ; 17 : 2819–2833. [CrossRef] [PubMed] [Google Scholar]
  34. Kim JC, Ou YY, Badano JL, et al. MKKS/BBS6, a divergent chaperonin-like protein linked to the obesity disorder Bardet-Biedl syndrome, is a novel centrosomal component required for cytokinesis. J Cell Sci 2005 ; 118 : 1007–1020. [CrossRef] [PubMed] [Google Scholar]
  35. Chaki M, Airik R, Ghosh AK, et al. Exome capture reveals ZNF423 and CEP164 mutations, linking renal ciliopathies to DNA damage response signaling. Cell 2012 ; 150 : 533–548. [CrossRef] [PubMed] [Google Scholar]
  36. Airik R, Slaats GG, Guo Z, et al. Renal-retinal ciliopathy gene Sdccag8 regulates DNA damage response signaling. J Am SocNephrol 2014 (sous presse). [Google Scholar]
  37. Giorgio G, Alfieri M, Prattichizzo C, et al. Functional characterization of the OFD1 protein reveals a nuclear localization and physical interaction with subunits of a chromatin remodeling complex. Mol Biol Cell 2007 ; 18 : 4397–4404. [CrossRef] [PubMed] [Google Scholar]
  38. Cui C, Chatterjee B, Lozito TP, et al. Wdpcp, a PCP protein required for ciliogenesis, regulates directional cell migration, cell polarity by direct modulation of the actin cytoskeleton. PLoS Biol 2013 ; 11 : e1001720. [CrossRef] [PubMed] [Google Scholar]
  39. Ibraghimov-Beskrovnaya O, Natoli TA. mTOR signaling in polycystic kidney disease. Trends Mol Med 2011 ; 17 : 625–633. [CrossRef] [PubMed] [Google Scholar]
  40. Smith KR, Kieserman EK, Wang PI, et al. A role for central spindle proteins in cilia structure and function. Cytoskelet Hoboken 2011 ; 68 : 112–124. [CrossRef] [Google Scholar]
  41. Miyamoto T, Porazinski S, Wang H, et al. Insufficiency of BUBR1, a mitotic spindle checkpoint regulator, causes impaired ciliogenesis in vertebrates. Hum Mol Genet 2011 ; 20 : 2058–2070. [CrossRef] [PubMed] [Google Scholar]
  42. Bachmann-Gagescu R. Complexité génétique des ciliopathies et identification de nouveaux gènes. Med Sci (Paris) 2014 ; 30 : 1011–1023. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  43. Chennen K, Scerbo MJ, Dollfus H, et al. Syndrome de Bardet-Biedl : cils et obésité. De la génétique à l’approche intégrative. Med Sci (Paris) 2014 ; 30 : 1034–1039. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  44. Laclef C. Le cil primaire, orchestrateur de la morphogenèse cérébrale. Med Sci (Paris) 2014 ; 30 : 980–990. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  45. Métin C. Cils et migrations neuronales. Med Sci (Paris) 2014 ; 30 : 991–995. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  46. Hollande F, Joubert D. Fuseau mitotique et division asymétrique des cellules souches. Med Sci (Paris) 2010 ; 26 : 1027–1030. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  47. Paces-Fessy M. Cils et kystes rénaux. Med Sci (Paris) 2014 ; 30 : 1024–1033. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  48. Fort C, Bastin P. élongation de l’axonème et dynamique du transport intraflagellaire. Med Sci (Paris) 2014 ; 30 : 955–961. [Google Scholar]
  49. Delgehyr N, Spassky N. Cil primaire, cycle cellulaire et prolifération. Med Sci (Paris) 2014 ; 30 : 976–979. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.