Accès gratuit
Numéro
Med Sci (Paris)
Volume 30, Numéro 11, Novembre 2014
Cils primaires et ciliopathies
Page(s) 1040 - 1046
Section Cils primaires et ciliopathies
DOI https://doi.org/10.1051/medsci/20143011019
Publié en ligne 10 novembre 2014
  1. Hildebrandt F, Benzing T, Katsanis N. Ciliopathies. N Engl J Med 2011 ; 364 : 1533–1543. [CrossRef] [PubMed] [Google Scholar]
  2. Zaghloul NA, Katsanis N. Functional modules, mutational load and human genetic disease. Trends Genet 2010 ; 26 : 168–176. [CrossRef] [PubMed] [Google Scholar]
  3. Ishikawa H, Thompson J, Yates JR, et al. Proteomic analysis of mammalian primary cilia. Curr Biol 2012 ; 22 : 414–419. [CrossRef] [PubMed] [Google Scholar]
  4. Rosenbaum JL, Witman GB. Intraflagellar transport. Nat Rev Mol Cell Biol 2002 ; 3 : 813–825. [CrossRef] [PubMed] [Google Scholar]
  5. Huangfu D, Liu A, Rakeman AS, et al. Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 2003 ; 426 : 83–87. [CrossRef] [PubMed] [Google Scholar]
  6. Jurczyk A, Gromley A, Redick S, et al. Pericentrin forms a complex with intraflagellar transport proteins and polycystin-2 and is required for primary cilia assembly. J Cell Biol 2004 ; 166 : 637–643. [CrossRef] [PubMed] [Google Scholar]
  7. Ahmed NT, Gao C, Lucker BF, et al. ODA16 aids axonemal outer row dynein assembly through an interaction with the intraflagellar transport machinery. J Cell Biol 2008 ; 183 : 313–322. [CrossRef] [PubMed] [Google Scholar]
  8. Sedmak T, Wolfrum U. Intraflagellar transport molecules in ciliary and nonciliary cells of the retina. J Cell Biol 2010 ; 189 : 171–186. [CrossRef] [PubMed] [Google Scholar]
  9. Finetti F, Patrussi L, Masi G, et al. Specific recycling receptors are targeted to the immune synapse by the intraflagellar transport system. J Cell Sci 2014 ; 127 : 1924–1937. [CrossRef] [PubMed] [Google Scholar]
  10. Finetti F, Paccani SR, Riparbelli MG, et al. Intraflagellar transport is required for polarized recycling of the TCR/CD3 complex to the immune synapse. Nat Cell Biol 2009 ; 11 : 1332–1339. [CrossRef] [PubMed] [Google Scholar]
  11. Omran H, Kobayashi D, Olbrich H, et al. Ktu/PF13 is required for cytoplasmic pre-assembly of axonemal dyneins. Nature 2008 ; 456 : 611–616. [CrossRef] [PubMed] [Google Scholar]
  12. Kim JC, Badano JL, Sibold S, et al. The Bardet-Biedl protein BBS4 targets cargo to the pericentriolar region and is required for microtubule anchoring and cell cycle progression. Nat Genet 2004 ; 36 : 462–470. [CrossRef] [PubMed] [Google Scholar]
  13. Spassky N, Han YG, Aguilar A, et al. Primary cilia are required for cerebellar development and Shh-dependent expansion of progenitor pool. Dev Biol 2008 ; 317 : 246–259. [CrossRef] [PubMed] [Google Scholar]
  14. Delaval B, Bright A, Lawson ND, et al. The cilia protein IFT88 is required for spindle orientation in mitosis. Nat Cell Biol 2011 ; 13 : 461–468. [CrossRef] [PubMed] [Google Scholar]
  15. Qin H, Wang Z, Diener D, et al. Intraflagellar transport protein 27 is a small G protein involved in cell-cycle control. Curr Biol 2007 ; 17 : 193–202. [CrossRef] [PubMed] [Google Scholar]
  16. Plotnikova OV, Golemis EA, Pugacheva EN. Cell cycle-dependent ciliogenesis and cancer. Cancer Res 2008 ; 68 : 2058–2061. [CrossRef] [PubMed] [Google Scholar]
  17. Mikule K, Delaval B, Kaldis P, et al. Loss of centrosome integrity induces p38–p53-p21-dependent G1-S arrest. Nat Cell Biol 2007 ; 9 : 160–170. [CrossRef] [PubMed] [Google Scholar]
  18. Robert A, Margall-Ducos G, Guidotti JE, et al. The intraflagellar transport component IFT88/polaris is a centrosomal protein regulating G1-S transition in non-ciliated cells. J Cell Sci 2007 ; 120 : 628–637. [CrossRef] [PubMed] [Google Scholar]
  19. Isfort RJ, Cody DB, Doersen CJ, et al. The tetratricopeptide repeat containing Tg737 gene is a liver neoplasia tumor suppressor gene. Oncogene 1997 ; 15 : 1797–1803. [CrossRef] [PubMed] [Google Scholar]
  20. Richards WG, Yoder BK, Isfort RJ, et al. Oval cell proliferation associated with the murine insertional mutation TgN737Rpw. Am J Pathol 1996 ; 149 : 1919–1930. [PubMed] [Google Scholar]
  21. Li X, Luo Y, Starremans PG, et al. Polycystin-1 and polycystin-2 regulate the cell cycle through the helix-loop-helix inhibitor Id2. Nat Cell Biol 2005 ; 7 : 1202–1212. [CrossRef] [PubMed] [Google Scholar]
  22. Patel V, Li L, Cobo-Stark P, et al. Acute kidney injury and aberrant planar cell polarity induce cyst formation in mice lacking renal cilia. Hum Mol Genet 2008 ; 17 : 1578–1590. [CrossRef] [PubMed] [Google Scholar]
  23. Jonassen JA, San Agustin J, Follit JA, et al. Deletion of IFT20 in the mouse kidney causes misorientation of the mitotic spindle and cystic kidney disease. J Cell Biol 2008 ; 183 : 377–384. [CrossRef] [PubMed] [Google Scholar]
  24. Luyten A, Su X, Gondela S, et al. Aberrant regulation of planar cell polarity in polycystic kidney disease. J Am Soc Nephrol 2010 ; 21 : 1521–1532. [CrossRef] [PubMed] [Google Scholar]
  25. Fischer E, Legue E, Doyen A, et al. Defective planar cell polarity in polycystic kidney disease. Nat Genet 2006 ; 38 : 21–23. [CrossRef] [PubMed] [Google Scholar]
  26. Borovina A, Ciruna B. IFT88 plays a cilia- and PCP-independent role in controlling oriented cell divisions during vertebrate embryonic development. Cell Rep 2013 ; 5 : 37–43. [CrossRef] [PubMed] [Google Scholar]
  27. Wood CR, Wang Z, Diener D, et al. IFT proteins accumulate during cell division, localize to the cleavage furrow in Chlamydomonas. PloS One 2012 ; 7 : e30729. [CrossRef] [PubMed] [Google Scholar]
  28. Aboualaiwi WA, Muntean BS, Ratnam S, et al. Survivin-induced abnormal ploidy contributes to cystic kidney and aneurysm formation. Circulation 2014 ; 129 : 660–672. [CrossRef] [PubMed] [Google Scholar]
  29. AbouAlaiwi WA, Ratnam S, Booth RL, et al. Endothelial cells from humans and mice with polycystic kidney disease are characterized by polyploidy and chromosome segregation defects through survivin down-regulation. Hum Mol Genet 2011 ; 20 : 354–367. [CrossRef] [PubMed] [Google Scholar]
  30. Zhang J, Wu M, Wang S, et al. Polycystic kidney disease protein fibrocystin localizes to the mitotic spindle and regulates spindle bipolarity. Hum Mol Genet 2010 ; 19 : 3306–3319. [CrossRef] [PubMed] [Google Scholar]
  31. Haraguchi K, Hayashi T, Jimbo T, et al. Role of the kinesin-2 family protein, KIF3, during mitosis. J Biol Chem 2006 ; 281 : 4094–4099. [CrossRef] [PubMed] [Google Scholar]
  32. Burtey S, Riera M, Ribe E, et al. Centrosome overduplication and mitotic instability in PKD2 transgenic lines. Cell Biol Int 2008 ; 32 : 1193–1198. [CrossRef] [PubMed] [Google Scholar]
  33. Battini L, Macip S, Fedorova E, et al. Loss of polycystin-1 causes centrosome amplification and genomic instability. Hum Mol Genet 2008 ; 17 : 2819–2833. [CrossRef] [PubMed] [Google Scholar]
  34. Kim JC, Ou YY, Badano JL, et al. MKKS/BBS6, a divergent chaperonin-like protein linked to the obesity disorder Bardet-Biedl syndrome, is a novel centrosomal component required for cytokinesis. J Cell Sci 2005 ; 118 : 1007–1020. [CrossRef] [PubMed] [Google Scholar]
  35. Chaki M, Airik R, Ghosh AK, et al. Exome capture reveals ZNF423 and CEP164 mutations, linking renal ciliopathies to DNA damage response signaling. Cell 2012 ; 150 : 533–548. [CrossRef] [PubMed] [Google Scholar]
  36. Airik R, Slaats GG, Guo Z, et al. Renal-retinal ciliopathy gene Sdccag8 regulates DNA damage response signaling. J Am SocNephrol 2014 (sous presse). [Google Scholar]
  37. Giorgio G, Alfieri M, Prattichizzo C, et al. Functional characterization of the OFD1 protein reveals a nuclear localization and physical interaction with subunits of a chromatin remodeling complex. Mol Biol Cell 2007 ; 18 : 4397–4404. [CrossRef] [PubMed] [Google Scholar]
  38. Cui C, Chatterjee B, Lozito TP, et al. Wdpcp, a PCP protein required for ciliogenesis, regulates directional cell migration, cell polarity by direct modulation of the actin cytoskeleton. PLoS Biol 2013 ; 11 : e1001720. [CrossRef] [PubMed] [Google Scholar]
  39. Ibraghimov-Beskrovnaya O, Natoli TA. mTOR signaling in polycystic kidney disease. Trends Mol Med 2011 ; 17 : 625–633. [CrossRef] [PubMed] [Google Scholar]
  40. Smith KR, Kieserman EK, Wang PI, et al. A role for central spindle proteins in cilia structure and function. Cytoskelet Hoboken 2011 ; 68 : 112–124. [CrossRef] [Google Scholar]
  41. Miyamoto T, Porazinski S, Wang H, et al. Insufficiency of BUBR1, a mitotic spindle checkpoint regulator, causes impaired ciliogenesis in vertebrates. Hum Mol Genet 2011 ; 20 : 2058–2070. [CrossRef] [PubMed] [Google Scholar]
  42. Bachmann-Gagescu R. Complexité génétique des ciliopathies et identification de nouveaux gènes. Med Sci (Paris) 2014 ; 30 : 1011–1023. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  43. Chennen K, Scerbo MJ, Dollfus H, et al. Syndrome de Bardet-Biedl : cils et obésité. De la génétique à l’approche intégrative. Med Sci (Paris) 2014 ; 30 : 1034–1039. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  44. Laclef C. Le cil primaire, orchestrateur de la morphogenèse cérébrale. Med Sci (Paris) 2014 ; 30 : 980–990. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  45. Métin C. Cils et migrations neuronales. Med Sci (Paris) 2014 ; 30 : 991–995. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  46. Hollande F, Joubert D. Fuseau mitotique et division asymétrique des cellules souches. Med Sci (Paris) 2010 ; 26 : 1027–1030. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  47. Paces-Fessy M. Cils et kystes rénaux. Med Sci (Paris) 2014 ; 30 : 1024–1033. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  48. Fort C, Bastin P. élongation de l’axonème et dynamique du transport intraflagellaire. Med Sci (Paris) 2014 ; 30 : 955–961. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  49. Delgehyr N, Spassky N. Cil primaire, cycle cellulaire et prolifération. Med Sci (Paris) 2014 ; 30 : 976–979. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.