Accès gratuit
Med Sci (Paris)
Volume 30, Numéro 11, Novembre 2014
Cils primaires et ciliopathies
Page(s) 1034 - 1039
Section Cils primaires et ciliopathies
Publié en ligne 10 novembre 2014
  1. Davenport JR, Yoder BK. An incredible decade for the primary cilium : a look at a once-forgotten organelle. Am J Physiol Renal Physiol 2005 ; 289 : F1159–F1169. [CrossRef] [PubMed] [Google Scholar]
  2. Basten SG, Giles RH., Functional aspects of primary cilia in signaling, cell cycle, tumorigenesis. Cilia 2013 ; 2 : 6. [CrossRef] [PubMed] [Google Scholar]
  3. Yuan S, Sun Z. Expanding horizons : ciliary proteins reach beyond cilia. Annu Rev Genet 2013 ; 47 : 353–376. [CrossRef] [PubMed] [Google Scholar]
  4. Satir P, Pedersen LB, Christensen ST. The primary cilium at a glance. J Cell Sci 2010 ; 123 : 499–503. [CrossRef] [PubMed] [Google Scholar]
  5. Kim S, Tsiokas L. Cilia and cell cycle re-entry More than a coincidence. Cell Cycle 2011 ; 10 : 2683–2690. [CrossRef] [PubMed] [Google Scholar]
  6. Goto H, Inoko A, Inagaki M. Cell cycle progression by the repression of primary cilia formation in proliferating cells. Cell Mol Life Sci 2013 ; 70 : 3893–3905. [CrossRef] [PubMed] [Google Scholar]
  7. Snell WJ, Pan J, Wang Q. Cilia and flagella revealed : from flagellar assembly in Chlamydomonas to human obesity disorders. Cell 2004 ; 117 : 693–697. [CrossRef] [PubMed] [Google Scholar]
  8. Ishikawa H, Marshall WF. Ciliogenesis : building the cell’s antenna. Nat Rev Mol Cell Biol 2011 ; 12 : 222–234. [CrossRef] [PubMed] [Google Scholar]
  9. Afzelius BA. Cilia-related diseases. J Pathol 2004 ; 204 : 470–477. [CrossRef] [PubMed] [Google Scholar]
  10. Marshall WF. The cell biological basis of ciliary disease. J Cell Biol 2008 ; 180 : 17–21. [CrossRef] [PubMed] [Google Scholar]
  11. Badano JL, Mitsuma N, Beales PL, Katsanis N. The ciliopathies : an emerging class of human genetic disorders. Annu Rev Genomics Hum Genet 2006 ; 7 : 125–148. [CrossRef] [Google Scholar]
  12. Hildebrandt F, Benzing T, Katsanis N. Ciliopathies. N Engl J Med 2011 ; 364 : 1533–1543. [CrossRef] [PubMed] [Google Scholar]
  13. Mykytyn K, Nishimura DY, Searby CC, et al. Identification of the gene (BBS1) most commonly involved in Bardet-Biedl syndrome, a complex human obesity syndrome. Nat Genet 2002 ; 31 : 435–438. [PubMed] [Google Scholar]
  14. Nishimura DY, Searby CC, Carmi R, et al. Positional cloning of a novel gene on chromosome 16q causing Bardet-Biedl syndrome (BBS2). Hum Mol Genet 2001 ; 10 : 865–874. [CrossRef] [PubMed] [Google Scholar]
  15. Chiang AP, Nishimura D, Searby C, et al. Comparative genomic analysis identifies an ADP-ribosylation factor-like gene as the cause of Bardet-Biedl syndrome (BBS3). Am J Hum Genet 2004 ; 75 : 475–484. [CrossRef] [PubMed] [Google Scholar]
  16. Mykytyn K, Braun T, Carmi R, et al. Identification of the gene that, when mutated, causes the human obesity syndrome BBS4. Nat Genet 2001 ; 28 : 188–191. [CrossRef] [PubMed] [Google Scholar]
  17. Li JB, Gerdes JM, Haycraft CJ, et al. Comparative genomics identifies a flagellar and basal body proteome that includes the BBS5 human disease gene. Cell 2004 ; 117 : 541–552. [CrossRef] [PubMed] [Google Scholar]
  18. Stone DL, Slavotinek A, Bouffard GG, et al. Mutation of a gene encoding a putative chaperonin causes McKusick-Kaufman syndrome. Nat Genet 2000 ; 25 : 79–82. [CrossRef] [PubMed] [Google Scholar]
  19. Badano JL, Ansley SJ, Leitch CC, et al. Identification of a novel Bardet-Biedl syndrome protein, BBS7, that shares structural features with BBS1 and BBS2. Am J Hum Genet 2003 ; 72 : 650–658. [CrossRef] [PubMed] [Google Scholar]
  20. Ansley SJ, Badano JL, Blacque OE, et al. Basal body dysfunction is a likely cause of pleiotropic Bardet-Biedl syndrome. Nature 2003 ; 425 : 628–633. [CrossRef] [PubMed] [Google Scholar]
  21. Nishimura DY, Swiderski RE, Searby CC, et al. Comparative genomics and gene expression analysis identifies BBS9, a new Bardet-Biedl syndrome gene. Am J Hum Genet 2005 ; 77 : 1021–1033. [CrossRef] [PubMed] [Google Scholar]
  22. Stoetzel C, Laurier V, Davis EE, et al. BBS10 encodes a vertebrate-specific chaperonin-like protein and is a major BBS locus. Nat Genet 2006 ; 38 : 521–524. [CrossRef] [PubMed] [Google Scholar]
  23. Chiang AP, Beck JS, Yen HJ, et al. Homozygosity mapping with SNP arrays identifies TRIM32, an E3 ubiquitin ligase, as a Bardet-Biedl syndrome gene (BBS11). Proc Natl Acad Sci USA 2006 ; 103 : 6287–6292. [CrossRef] [Google Scholar]
  24. Stoetzel C, Muller J, Laurier V, et al. Identification of a novel BBS gene (BBS12) highlights the major role of a vertebrate-specific branch of chaperonin-related proteins in Bardet-Biedl syndrome. Am J Hum Genet 2007 ; 80 : 1–11. [CrossRef] [PubMed] [Google Scholar]
  25. Leitch CC, Zaghloul NA, Davis EE, et al. Hypomorphic mutations in syndromic encephalocele genes are associated with Bardet-Biedl syndrome. Nat Genet 2008 ; 40 : 443–448. [CrossRef] [PubMed] [Google Scholar]
  26. Sayer JA, Otto EA, O’Toole JF, et al. The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4. Nat Genet 2006 ; 38 : 674–681. [CrossRef] [PubMed] [Google Scholar]
  27. Kim SK, Shindo A, Park TJ, et al. Planar cell polarity acts through septins to control collective cell movement and ciliogenesis. Science 2010 ; 329 : 1337–1340. [CrossRef] [PubMed] [Google Scholar]
  28. Otto EA, Hurd TW, Airik R, et al. Candidate exome capture identifies mutation of SDCCAG8 as the cause of a retinal-renal ciliopathy. Nat Genet 2010 ; 42 : 840–850. [CrossRef] [PubMed] [Google Scholar]
  29. Marion V, Stutzmann F, Gérard M, et al. Exome sequencing identifies mutations in LZTFL1, a BBSome and smoothened trafficking regulator, in a family with Bardet-Biedl syndrome with situs inversus and insertional polydactyly. J Med Genet 2012 ; 49 : 317–321. [CrossRef] [PubMed] [Google Scholar]
  30. Scheidecker S, Etard C, Pierce NW, et al. Exome sequencing of Bardet-Biedl syndrome patient identifies a null mutation in the BBSome subunit BBIP1 (BBS18). J Med Genet 2014 ; 51 : 132–136. [CrossRef] [PubMed] [Google Scholar]
  31. Aldahmesh MA, Li Y, Alhashem A, et al. IFT27, encoding a small GTPase component of IFT particles, is mutated in a consanguineous family with Bardet-Biedl syndrome. Hum Mol Genet 2014 ; 23 : 3307–3315. [CrossRef] [PubMed] [Google Scholar]
  32. Collin GB, Marshall JD, Ikeda A, et al. Mutations in ALMS1 cause obesity, type 2 diabetes and neurosensory degeneration in Alström syndrome. Nat Genet 2002 ; 31 : 74–78. [PubMed] [Google Scholar]
  33. Gupta Sen P, Prodromou NV, Chapple JP. Can faulty antennae increase adiposity? The link between cilia proteins and obesity. J Endocrinol 2009 ; 203 : 327–336. [CrossRef] [PubMed] [Google Scholar]
  34. Mok CA, Héon E, Zhen M. Ciliary dysfunction and obesity. Clin Genet 2010 ; 77 : 18–27. [CrossRef] [PubMed] [Google Scholar]
  35. Ng M, Fleming T, Robinson M, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013 : a systematic analysis for the Global burden of disease study 2013. Lancet 2014 ; 384 : 766–781. [CrossRef] [PubMed] [Google Scholar]
  36. Barness LA, Opitz JM, Gilbert Barness E. Obesity : genetic, molecular, and environmental aspects. Am J Med Genet A 2007 ; 143A : 3016–3034. [CrossRef] [PubMed] [Google Scholar]
  37. Bell CG, Walley AJ, Froguel P. The genetics of human obesity. Nat Rev Genet 2005 ; 6 : 221–234. [CrossRef] [PubMed] [Google Scholar]
  38. Bardet G. On congenital obesity syndrome with polydactyly and retinitis pigmentosa (a contribution to the study of clinical forms of hypophyseal obesity 1920). Obes Res 1995 ; 3 : 387–399. [CrossRef] [PubMed] [Google Scholar]
  39. Morton GJ, Meek TH, Schwartz MW. Neurobiology of food intake in health and disease. Nat Rev Neurosci 2014 ; 15 : 367–378. [CrossRef] [PubMed] [Google Scholar]
  40. Broberger C, Johansen J, Johansson C, Schalling M, Hökfelt T. The neuropeptide Y/agouti gene-related protein (AGRP) brain circuitry in normal, anorectic, and monosodium glutamate-treated mice. Proc Natl Acad Sci USA 1998 ; 95 : 15043–15048. [CrossRef] [Google Scholar]
  41. Hahn TM, Breininger JF, Baskin DG, Schwartz MW. Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. Nat Neurosci 1998 ; 1 : 271–272. [CrossRef] [PubMed] [Google Scholar]
  42. Cowley MA, Smart JL, Rubinstein M, et al. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 2001 ; 411 : 480–484. [CrossRef] [PubMed] [Google Scholar]
  43. Carmi R, Elbedour K, Stone EM, Sheffield VC. Phenotypic differences among patients with Bardet-Biedl syndrome linked to three different chromosome loci. Am J Med Genet 1995 ; 59 : 199–203. [CrossRef] [PubMed] [Google Scholar]
  44. Rahmouni K, Fath MA, Seo S, et al. Leptin resistance contributes to obesity and hypertension in mouse models of Bardet-Biedl syndrome. J Clin Invest 2008 ; 118 : 1458–1467. [CrossRef] [PubMed] [Google Scholar]
  45. Seo S, Guo D-F, Bugge K, et al. Requirement of Bardet-Biedl syndrome proteins for leptin receptor signaling. Hum Mol Genet 2009 ; 18 : 1323–1331. [CrossRef] [PubMed] [Google Scholar]
  46. Berbari NF, Lewis JS, Bishop GA, Askwith CC, Mykytyn K. Bardet-Biedl syndrome proteins are required for the localization of G protein-coupled receptors to primary cilia. Proc Natl Acad Sci USA 2008 ; 105 : 4242–4246. [CrossRef] [Google Scholar]
  47. Farooqi IS, Jebb SA, Langmack G, et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N Engl J Med 1999 ; 341 : 879–884. [CrossRef] [PubMed] [Google Scholar]
  48. Marion V, Stoetzel C, Schlicht D, et al. Transient ciliogenesis involving Bardet-Biedl syndrome proteins is a fundamental characteristic of adipogenic differentiation. Proc Natl Acad Sci USA 2009 ; 106 : 1820–1825. [CrossRef] [Google Scholar]
  49. Aksanov O, Green P, Birk RZ. BBS4 directly affects proliferation and differentiation of adipocytes. Cell Mol Life Sci 2014 ; 71 : 3381–3392. [CrossRef] [PubMed] [Google Scholar]
  50. Berbari NF, Pasek RC, Malarkey EB, et al. Leptin resistance is a secondary consequence of the obesity in ciliopathy mutant mice. Proc Natl Acad Sci USA 2013 ; 110 : 7796–7801. [CrossRef] [Google Scholar]
  51. Loktev AV, Jackson PK. Neuropeptide Y family receptors traffic via the Bardet-Biedl syndrome pathway to signal in neuronal primary cilia. Cell Rep 2013 ; 5 : 1316–1329. [CrossRef] [PubMed] [Google Scholar]
  52. Loos RJ, Yeo GS. The bigger picture of FTO–the first GWAS-identified obesity gene. Nat Rev Endocrinol 2014 ; 10 : 51–61. [CrossRef] [PubMed] [Google Scholar]
  53. Bochukova EG, Huang N, Keogh J, et al. Large, rare chromosomal deletions associated with severe early-onset obesity. Nature 2010 ; 463 : 666–670. [CrossRef] [PubMed] [Google Scholar]
  54. Lavebratt C, Almgren M, Ekström TJ. Epigenetic regulation in obesity. Int J Obes (Lond) 2012 ; 36 : 757–765. [CrossRef] [PubMed] [Google Scholar]
  55. Ortega FJ, Mercader JM, Catalán V, et al. Targeting the circulating microRNA signature of obesity. Clin Chem 2013 ; 59 : 781–792. [CrossRef] [PubMed] [Google Scholar]
  56. David Brockman XC. Proteomics in the characterization of adipose dysfunction in obesity. Adipocyte 2012 ; 1 : 25–37. [CrossRef] [PubMed] [Google Scholar]
  57. Xie B, Waters MJ, Schirra HJ., Investigating potential mechanisms of obesity by metabolomics. J Biomed Biotechnol 2012 ; 2012 : 805683. [PubMed] [Google Scholar]
  58. Li F, Jiang C, Larsen MC, et al. Lipidomics reveals a link between CYP1B1 and SCD1 in promoting obesity. J Proteome Res 2014 ; 13 : 2679–2687. [CrossRef] [PubMed] [Google Scholar]
  59. Dahlman I, Elsen M, Tennagels N, et al. Functional annotation of the human fat cell secretome. Arch Physiol Biochem 2012 ; 118 : 84–91. [CrossRef] [PubMed] [Google Scholar]
  60. Malpique R, Figueiredo H, Esteban Y, et al. Integrative analysis reveals novel pathways mediating the interaction between adipose tissue and pancreatic islets in obesity in rats. Diabetologia 2014 ; 57 : 1219–1231. [CrossRef] [PubMed] [Google Scholar]
  61. Kurland IJ, Accili D, Burant C, et al. Application of combined omics platforms to accelerate biomedical discovery in diabesity. Ann NY Acad Sci 2013 ; 1287 : 1–16. [CrossRef] [Google Scholar]
  62. Forsythe P, Kunze WA. Voices from within : gut microbes and the CNS. Cell Mol Life Sci 2013 ; 70 : 55–69. [CrossRef] [PubMed] [Google Scholar]
  63. Stevens A, De Leonibus C, Hanson D, et al. Network analysis : a new approach to study endocrine disorders. J Mol Endocrinol 2014 ; 52 : R79–R93. [CrossRef] [PubMed] [Google Scholar]
  64. Meng Q, Mäkinen VP, Luk H, Yang X. Systems biology approaches and applications in obesity, diabetes, and cardiovascular diseases. Curr Cardiovasc Risk Rep 2013 ; 7 : 73–81. [CrossRef] [PubMed] [Google Scholar]
  65. Delgehyr N, Spassky N. Cil primaire, cycle cellulaire et prolifération. Med Sci (Paris) 2014 ; 30 : 976–979. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  66. Paces-Fessy M. Cils et kystes rénaux. Med Sci (Paris) 2014 ; 30 : 1024–1033. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  67. Ezan J, Montcouquiol M. Les liens multiples entre les cils et la polarité planaire cellulaire. Med Sci (Paris) 2014 ; 30 : 1004–1010. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  68. Bachmann-Gagescu R. Complexité génétique des ciliopathies et identification de nouveaux gènes. Med Sci (Paris) 2014 ; 30 : 1011–1023. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  69. Fort C, Bastin P. Élongation de l’axonème et dynamique du transport intraflagellaire. Med Sci (Paris) 2014 ; 30 : 955–961. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.