Accès gratuit
Med Sci (Paris)
Volume 30, Numéro 11, Novembre 2014
Cils primaires et ciliopathies
Page(s) 1024 - 1033
Section Cils primaires et ciliopathies
Publié en ligne 10 novembre 2014
  1. Pan J, Seeger-Nukpezah T, Golemis EA. The role of the cilium in normal and abnormal cell cycles: emphasis on renal cystic pathologies. Cell Mol Life Sci 2013 ; 70 : 1849–1874. [CrossRef] [PubMed]
  2. Hildebrandt F, Benzing T, Katsanis N. Ciliopathies. N Engl J Med 2011 ; 364 : 1533–1543. [CrossRef] [PubMed]
  3. Gallagher AR, Germino GG, Somlo S. Molecular advances in autosomal dominant polycystic kidney disease. Adv Chronic Kidney Dis 2010 ; 17 : 118–130. [CrossRef] [PubMed]
  4. Nickel C, Benzing T, Sellin L, et al. The polycystin-1 C-terminal fragment triggers branching morphogenesis and migration of tubular kidney epithelial cells. J Clin Invest 2002 ; 109 : 481–489. [CrossRef] [PubMed]
  5. Streets AJ, Wessely O, Peters DJ, Ong AC. Hyperphosphorylation of polycystin-2 at a critical residue in disease reveals an essential role for polycystin-1-regulated dephosphorylation. Hum Mol Genet 2013 ; 22 : 1924–1939. [CrossRef] [PubMed]
  6. Watnick TJ, Germino GG. Polycystic kidney disease: Polycystin-1 and polycystin-2-it’s complicated. Nat Rev Nephrol 2013 ; 9 : 249–250. [CrossRef] [PubMed]
  7. Wu Y, Dai XQ, Li Q, et al. Kinesin-2 mediates physical and functional interactions between polycystin-2 and fibrocystin. Hum Mol Genet 2006 ; 15 : 3280–3292. [CrossRef] [PubMed]
  8. Delous M, Hellman NE, Gaude HM, et al. Nephrocystin-1 and nephrocystin-4 are required for epithelial morphogenesis and associate with PALS1/PATJ and Par6. Hum Mol Genet 2009 ; 18 : 4711–4723. [CrossRef] [PubMed]
  9. Ghosh AK, Hurd T, Hildebrandt F. 3D spheroid defects in NPHP knockdown cells are rescued by the somatostatin receptor agonist octreotide. Am J Physiol Renal Physiol 2012 ; 303 : F1225–F1229. [CrossRef] [PubMed]
  10. Cui C, Chatterjee B, Francis D, et al. Disruption of Mks1 localization to the mother centriole causes cilia defects and developmental malformations in Meckel-Gruber syndrome. Dis Model Mech 2011 ; 4 : 43–56. [CrossRef] [PubMed]
  11. Phillips CL, Miller KJ, Filson AJ, et al. Renal cysts of inv/inv mice resemble early infantile nephronophthisis. J Am Soc Nephrol 2004 ; 15 : 1744–1755. [CrossRef] [PubMed]
  12. Shiba D, Takamatsu T, Yokoyama T. Primary cilia of inv/inv mouse renal epithelial cells sense physiological fluid flow: bending of primary cilia and Ca2+ influx. Cell Struct Funct 2005 ; 30 : 93–100. [CrossRef] [PubMed]
  13. Yoder BK, Hou X, Guay-Woodford LM. The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J Am Soc Nephrol 2002 ; 13 : 2508–2516. [CrossRef] [PubMed]
  14. Pazour GJ, Dickert BL, Vucica Y, et al. Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J Cell Biol 2000 ; 151 : 709–718. [CrossRef] [PubMed]
  15. Halbritter J, Bizet AA, Schmidts M, et al. Defects in the IFT-B component IFT172 cause Jeune and Mainzer-Saldino syndromes in humans. Am J Hum Genet 2013 ; 93 : 915–925. [CrossRef] [PubMed]
  16. Schmidts M, Frank V, Eisenberger T, et al. Combined NGS approaches identify mutations in the intraflagellar transport gene IFT140 in skeletal ciliopathies with early progressive kidney disease. Hum Mutat 2013 ; 34 : 714–724. [CrossRef] [PubMed]
  17. Jonassen JA, SanAgustin J, Follit JA, Pazour GJ. Deletion of IFT20 in the mouse kidney causes misorientation of the mitotic spindle and cystic kidney disease. J Cell Biol 2008 ; 183 : 377–384. [CrossRef] [PubMed]
  18. Jonassen JA, SanAgustin J, Baker SP, Pazour GJ. Disruption of IFT complex A causes cystic kidneys without mitotic spindle misorientation. J Am Soc Nephrol 2012 ; 23 : 641–651. [CrossRef] [PubMed]
  19. Cong EH, Bizet AA, Boyer O, et al. A Homozygous missense mutation in the ciliary gene TTC21B causes familial FSGS. J Am Soc Nephrol 2014 ; Doi : 10.1681/ASN.2013101126.
  20. Costantini F. Genetic controls and cellular behaviors in branching morphogenesis of the renal collecting system. Wiley Interdisc Rev Dev Biol 2012 ; 1 : 693–713. [CrossRef]
  21. Olteanu D, Liu X, Liu W, et al. Increased Na+/H+ exchanger activity on the apical surface of a cilium-deficient cortical collecting duct principal cell model of polycystic kidney disease. Am J Physiol 2006 ; 302 : C1436–C1451. [CrossRef]
  22. Lu W, Peissel B, Babakhanlou H, et al. Perinatal lethality with kidney and pancreas defects in mice with a targetted Pkd1 mutation. Nat Genet 1997 ; 17 : 179–181. [CrossRef] [PubMed]
  23. Piontek K, Menezes LF, Garcia-Gonzalez MA, et al. A critical developmental switch defines the kinetics of kidney cyst formation after loss of Pkd1. Nat Med 2007 ; 13 : 1490–1495. [CrossRef] [PubMed]
  24. Lantinga-van Leeuwen IS, Leonhard WN, van der Wal A, et al. Kidney-specific inactivation of the Pkd1 gene induces rapid cyst formation in developing kidneys and a slow onset of disease in adult mice. Hum Mol Genet 2007 ; 16 : 3188–3196. [CrossRef] [PubMed]
  25. Davenport JR, Watts AJ, Roper VC, et al. Disruption of intraflagellar transport in adult mice leads to obesity and slow-onset cystic kidney disease. Curr Biol 2007 ; 17 : 1586–1594. [CrossRef] [PubMed]
  26. Patel V, Li L, Cobo-Stark P, et al. Acute kidney injury and aberrant planar cell polarity induce cyst formation in mice lacking renal cilia. Hum Mol Genet 2008 ; 17 : 1578–1590. [CrossRef] [PubMed]
  27. Menezes LF, Germino GG. Polycystic kidney disease, cilia, and planar polarity. Methods Cell Biol 2009 ; 94 : 273–297. [CrossRef] [PubMed]
  28. Lin F, Hiesberger T, Cordes K, et al. Kidney-specific inactivation of the KIF3A subunit of kinesin-II inhibits renal ciliogenesis and produces polycystic kidney disease. Proc Natl Acad Sci USA 2003 ; 100 : 5286–5291. [CrossRef]
  29. Hopp K, Ward CJ, Hommerding CJ, et al. Functional polycystin-1 dosage governs autosomal dominant polycystic kidney disease severity. J Clin Invest 2012 ; 122 : 4257–4273. [CrossRef] [PubMed]
  30. Chi L, Galtseva A, Chen L, et al. Kif3a controls murine nephron number via GLI3 repressor, cell survival, gene expression in a lineage-specific manner. PloS One 2013 ; 8 : e65448. [CrossRef] [PubMed]
  31. Zhou J. Polycystins and primary cilia: primers for cell cycle progression. Annu Rev Physiol 2009 ; 71 : 83–113. [CrossRef] [PubMed]
  32. Patel A. The Primary cilium calcium channels and their role in flow sensing. Pflugers Arch 2014 ; Doi : 10.1007/s00424-014-1516-0. [PubMed]
  33. Sharif-Naeini R, Folgering JH, Bichet D, et al. Polycystin-1 and -2 dosage regulates pressure sensing. Cell 2009 ; 139 : 587–596. [CrossRef] [PubMed]
  34. Nauli SM, Alenghat FJ, Luo Y, et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 2003 ; 33 : 129–137. [CrossRef] [PubMed]
  35. Choi YH, Suzuki A, Hajarnis S, et al. Polycystin-2 and phosphodiesterase 4C are components of a ciliary A-kinase anchoring protein complex that is disrupted in cystic kidney diseases. Proc Natl Acad Sci USA 2011 ; 108 : 10679–10684. [CrossRef]
  36. Torres VE, Harris PC. Strategies targeting cAMP signaling in the treatment of polycystic kidney disease. J Am Soc Nephrol 2014 ; 25 : 18–32. [CrossRef] [PubMed]
  37. Boletta A., Emerging evidence of a link between the polycystins, the mTOR pathways. PathoGenetics 2009 ; 2 : 6. [CrossRef] [PubMed]
  38. Gattone VH, 2nd, Sinders RM, Hornberger TA, Robling AG. Late progression of renal pathology and cyst enlargement is reduced by rapamycin in a mouse model of nephronophthisis. Kidney Int 2009 ; 76 : 178–182. [CrossRef] [PubMed]
  39. Boehlke C, Kotsis F, Patel V, et al. Primary cilia regulate mTORC1 activity and cell size through Lkb1. Nat Cell Biol 2010 ; 12 : 1115–1122. [CrossRef] [PubMed]
  40. Ma M, Tian X, Igarashi P, et al. Loss of cilia suppresses cyst growth in genetic models of autosomal dominant polycystic kidney disease. Nat Genet 2013 ; 45 : 1004–1012. [CrossRef] [PubMed]
  41. Sharma N, Malarkey EB, Berbari NF, et al. Proximal tubule proliferation is insufficient to induce rapid cyst formation after cilia disruption. J Am Soc Nephrol 2013 ; 24 : 456–464. [CrossRef] [PubMed]
  42. Koch A, Poirier F, Jacob R, Delacour D. Galectin-3, a novel centrosome-associated protein, required for epithelial morphogenesis. Mol Biol Cell 2010 ; 21 : 219–231. [CrossRef] [PubMed]
  43. Vijayakumar S, Dang S, Marinkovich MP, et al. Aberrant expression of laminin-332 promotes cell proliferation and cyst growth in ARPKD. Am J Physiol Renal Physiol 2014 ; 306 : F640–F654. [CrossRef] [PubMed]
  44. Drummond IA. Polycystins, focal adhesions and extracellular matrix interactions. Biochim Biophys Acta 2011 ; 1812 : 1322–1326. [CrossRef] [PubMed]
  45. Yao G, Su X, Nguyen V, et al. Polycystin-1 regulates actin cytoskeleton organization and directional cell migration through a novel PC1-pacsin 2-N-wasp complex. Hum Mol Genet 2014 ; 23 : 2769–2779. [CrossRef] [PubMed]
  46. Fischer E, Legue E, Doyen A, et al. Defective planar cell polarity in polycystic kidney disease. Nat Genet 2006 ; 38 : 21–23. [CrossRef] [PubMed]
  47. Nigg EA, Stearns T. The centrosome cycle: Centriole biogenesis, duplication and inherent asymmetries. Nat Cell Biol 2011 ; 13 : 1154–1160. [CrossRef] [PubMed]
  48. Karner CM, Chirumamilla R, Aoki S, et al. Wnt9b signaling regulates planar cell polarity and kidney tubule morphogenesis. Nat Genet 2009 ; 41 : 793–799. [CrossRef] [PubMed]
  49. Nishio S, Tian X, Gallagher AR, et al. Loss of oriented cell division does not initiate cyst formation. J Am Soc Nephrol 2010 ; 21 : 295–302. [CrossRef] [PubMed]
  50. Lienkamp SS, Liu K, Karner CM, et al. Vertebrate kidney tubules elongate using a planar cell polarity-dependent, rosette-based mechanism of convergent extension. Nat Genet 2012 ; 44 : 1382–1387. [CrossRef] [PubMed]
  51. Vasilyev A, Liu Y, Mudumana S, et al. Collective cell migration drives morphogenesis of the kidney nephron. PLoS Biol 2009 ; 7 : e9. [CrossRef] [PubMed]
  52. Castelli M, Boca M, Chiaravalli M, et al. Polycystin-1 binds Par3/aPKC, controls convergent extension during renal tubular morphogenesis. Nat Commun 2013 ; 4 : 2658. [CrossRef] [PubMed]
  53. Tran PV, Sharma M, Li X, Calvet JP. Developmental signaling: Does it bridge the gap between cilia dysfunction and renal cystogenesis ?. Birth Defects Res C Embryo Today 2014 ; 102 : 159–173. [CrossRef] [PubMed]
  54. Cain JE, Islam E, Haxho F, et al. GLI3 repressor controls nephron number via regulation of Wnt11, Ret in ureteric tip cells. PloS One 2009 ; 4 : e7313. [CrossRef] [PubMed]
  55. Tran PV, Talbott GC, Turbe-Doan A, et al. Downregulating hedgehog signaling reduces renal ccystogenic potential of mouse models. J Am Soc Nephrol 2014 ; Doi : 10.1681/ASN.2013070735.
  56. Li B, Rauhauser AA, Dai J, et al. Increased hedgehog signaling in postnatal kidney results in aberrant activation of nephron developmental programs. Hum Mol Genet 2011 ; 20 : 4155–4166. [CrossRef] [PubMed]
  57. Chan SK, Riley PR, Price KL, et al. Corticosteroid-induced kidney dysmorphogenesis is associated with deregulated expression of known cystogenic molecules, as well as Indian hedgehog. Am J Physiol Renal Physiol 2010 ; 298 : F346–F356. [CrossRef] [PubMed]
  58. Simons M, Gloy J, Ganner A, et al. Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways. Nat Genet 2005 ; 37 : 537–543. [CrossRef] [PubMed]
  59. Lancaster MA, Gleeson JG. Cystic kidney disease: the role of Wnt signaling. Trends Mol Med 2010 ; 16 : 349–360. [CrossRef] [PubMed]
  60. Sugiyama N, Tsukiyama T, Yamaguchi TP, Yokoyama T. The canonical Wnt signaling pathway is not involved in renal cyst development in the kidneys of inv mutant mice. Kidney Int 2011 ; 79 : 957–965. [CrossRef] [PubMed]
  61. Miller MM, Iglesias DM, Zhang Z, et al. T-cell factor/beta-catenin activity is suppressed in two different models of autosomal dominant polycystic kidney disease. Kidney Int 2011 ; 80 : 146–153. [CrossRef] [PubMed]
  62. Burckle C, Gaude HM, Vesque C, et al. Control of the Wnt pathways by nephrocystin-4 is required for morphogenesis of the zebrafish pronephros. Hum Mol Genet 2011 ; 20 : 2611–2627. [CrossRef] [PubMed]
  63. Yates LL, Papakrivopoulou J, Long DA, et al. The planar cell polarity gene Vangl2 is required for mammalian kidney-branching morphogenesis and glomerular maturation. Hum Mol Genet 2010 ; 19 : 4663–4676. [CrossRef] [PubMed]
  64. Mao Y, Mulvaney J, Zakaria S, et al. Characterization of a Dchs1 mutant mouse reveals requirements for Dchs1-Fat4 signaling during mammalian development. Development 2011 ; 138 : 947–957. [CrossRef] [PubMed]
  65. Saburi S, Hester I, Goodrich L, McNeill H. Functional interactions between Fat family cadherins in tissue morphogenesis and planar polarity. Development 2012 ; 139 : 1806–1820. [CrossRef] [PubMed]
  66. Brown NE, Murcia NS. Delayed cystogenesis and increased ciliogenesis associated with the re-expression of polaris in Tg737 mutant mice. Kidney Int 2003 ; 63 : 1220–1229. [CrossRef] [PubMed]
  67. Rowe I, Chiaravalli M, Mannella V, et al. Defective glucose metabolism in polycystic kidney disease identifies a new therapeutic strategy. Nat Med 2014 ; 19 : 488–493. [CrossRef]
  68. Nagalakshmi VK, Ren Q, Pugh MM, et al. Dicer regulates the development of nephrogenic and ureteric compartments in the mammalian kidney. Kidney Int 2011 ; 79 : 317–330. [CrossRef] [PubMed]
  69. Sharma P, McNeill H. Fat and Dachsous cadherins. Prog Mol Biol Transl Sci 2013 ; 116 : 215–235. [CrossRef] [PubMed]
  70. Bachmann-Gagescu R. Complexité génétique des ciliopathies et identification de nouveaux gènes. Med Sci (Paris) 2014 ; 30 : 1011–1023. [CrossRef] [EDP Sciences] [PubMed]
  71. Fort C, Bastin P. Élongation de l’axonème et dynamique du transport intraflagellaire. Med Sci (Paris) 2014 ; 30 : 955–961. [CrossRef] [EDP Sciences] [PubMed]
  72. Taulet N, Delaval B. De nouvelles fonctions extraciliaires pour les protéines ciliaires. Quelles conséquences sur l’apparition de ciliopathies ? Med Sci (Paris) 2014 ; 30 : 1040–1050. [CrossRef] [EDP Sciences] [PubMed]
  73. Ezan J, Montcouquiol M. Les liens multiples entre les cils et la polarité planaire cellulaire. Med Sci (Paris) 2014 ; 30 : 1004–1010. [CrossRef] [EDP Sciences] [PubMed]
  74. Laclef C. Le cil primaire, orchestrateur de la morphogenèse cérébrale. Med Sci (Paris) 2014 ; 30 : 980–990. [CrossRef] [EDP Sciences] [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.