Free Access
Med Sci (Paris)
Volume 30, Number 11, Novembre 2014
Cils primaires et ciliopathies
Page(s) 1024 - 1033
Section Cils primaires et ciliopathies
Published online 10 November 2014
  1. Pan J, Seeger-Nukpezah T, Golemis EA. The role of the cilium in normal and abnormal cell cycles: emphasis on renal cystic pathologies. Cell Mol Life Sci 2013 ; 70 : 1849–1874. [CrossRef] [PubMed] [Google Scholar]
  2. Hildebrandt F, Benzing T, Katsanis N. Ciliopathies. N Engl J Med 2011 ; 364 : 1533–1543. [CrossRef] [PubMed] [Google Scholar]
  3. Gallagher AR, Germino GG, Somlo S. Molecular advances in autosomal dominant polycystic kidney disease. Adv Chronic Kidney Dis 2010 ; 17 : 118–130. [CrossRef] [PubMed] [Google Scholar]
  4. Nickel C, Benzing T, Sellin L, et al. The polycystin-1 C-terminal fragment triggers branching morphogenesis and migration of tubular kidney epithelial cells. J Clin Invest 2002 ; 109 : 481–489. [CrossRef] [PubMed] [Google Scholar]
  5. Streets AJ, Wessely O, Peters DJ, Ong AC. Hyperphosphorylation of polycystin-2 at a critical residue in disease reveals an essential role for polycystin-1-regulated dephosphorylation. Hum Mol Genet 2013 ; 22 : 1924–1939. [CrossRef] [PubMed] [Google Scholar]
  6. Watnick TJ, Germino GG. Polycystic kidney disease: Polycystin-1 and polycystin-2-it’s complicated. Nat Rev Nephrol 2013 ; 9 : 249–250. [CrossRef] [PubMed] [Google Scholar]
  7. Wu Y, Dai XQ, Li Q, et al. Kinesin-2 mediates physical and functional interactions between polycystin-2 and fibrocystin. Hum Mol Genet 2006 ; 15 : 3280–3292. [CrossRef] [PubMed] [Google Scholar]
  8. Delous M, Hellman NE, Gaude HM, et al. Nephrocystin-1 and nephrocystin-4 are required for epithelial morphogenesis and associate with PALS1/PATJ and Par6. Hum Mol Genet 2009 ; 18 : 4711–4723. [CrossRef] [PubMed] [Google Scholar]
  9. Ghosh AK, Hurd T, Hildebrandt F. 3D spheroid defects in NPHP knockdown cells are rescued by the somatostatin receptor agonist octreotide. Am J Physiol Renal Physiol 2012 ; 303 : F1225–F1229. [CrossRef] [PubMed] [Google Scholar]
  10. Cui C, Chatterjee B, Francis D, et al. Disruption of Mks1 localization to the mother centriole causes cilia defects and developmental malformations in Meckel-Gruber syndrome. Dis Model Mech 2011 ; 4 : 43–56. [CrossRef] [PubMed] [Google Scholar]
  11. Phillips CL, Miller KJ, Filson AJ, et al. Renal cysts of inv/inv mice resemble early infantile nephronophthisis. J Am Soc Nephrol 2004 ; 15 : 1744–1755. [CrossRef] [PubMed] [Google Scholar]
  12. Shiba D, Takamatsu T, Yokoyama T. Primary cilia of inv/inv mouse renal epithelial cells sense physiological fluid flow: bending of primary cilia and Ca2+ influx. Cell Struct Funct 2005 ; 30 : 93–100. [CrossRef] [PubMed] [Google Scholar]
  13. Yoder BK, Hou X, Guay-Woodford LM. The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J Am Soc Nephrol 2002 ; 13 : 2508–2516. [CrossRef] [PubMed] [Google Scholar]
  14. Pazour GJ, Dickert BL, Vucica Y, et al. Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J Cell Biol 2000 ; 151 : 709–718. [CrossRef] [PubMed] [Google Scholar]
  15. Halbritter J, Bizet AA, Schmidts M, et al. Defects in the IFT-B component IFT172 cause Jeune and Mainzer-Saldino syndromes in humans. Am J Hum Genet 2013 ; 93 : 915–925. [CrossRef] [PubMed] [Google Scholar]
  16. Schmidts M, Frank V, Eisenberger T, et al. Combined NGS approaches identify mutations in the intraflagellar transport gene IFT140 in skeletal ciliopathies with early progressive kidney disease. Hum Mutat 2013 ; 34 : 714–724. [CrossRef] [PubMed] [Google Scholar]
  17. Jonassen JA, SanAgustin J, Follit JA, Pazour GJ. Deletion of IFT20 in the mouse kidney causes misorientation of the mitotic spindle and cystic kidney disease. J Cell Biol 2008 ; 183 : 377–384. [CrossRef] [PubMed] [Google Scholar]
  18. Jonassen JA, SanAgustin J, Baker SP, Pazour GJ. Disruption of IFT complex A causes cystic kidneys without mitotic spindle misorientation. J Am Soc Nephrol 2012 ; 23 : 641–651. [CrossRef] [PubMed] [Google Scholar]
  19. Cong EH, Bizet AA, Boyer O, et al. A Homozygous missense mutation in the ciliary gene TTC21B causes familial FSGS. J Am Soc Nephrol 2014 ; Doi : 10.1681/ASN.2013101126. [Google Scholar]
  20. Costantini F. Genetic controls and cellular behaviors in branching morphogenesis of the renal collecting system. Wiley Interdisc Rev Dev Biol 2012 ; 1 : 693–713. [CrossRef] [Google Scholar]
  21. Olteanu D, Liu X, Liu W, et al. Increased Na+/H+ exchanger activity on the apical surface of a cilium-deficient cortical collecting duct principal cell model of polycystic kidney disease. Am J Physiol 2006 ; 302 : C1436–C1451. [CrossRef] [Google Scholar]
  22. Lu W, Peissel B, Babakhanlou H, et al. Perinatal lethality with kidney and pancreas defects in mice with a targetted Pkd1 mutation. Nat Genet 1997 ; 17 : 179–181. [CrossRef] [PubMed] [Google Scholar]
  23. Piontek K, Menezes LF, Garcia-Gonzalez MA, et al. A critical developmental switch defines the kinetics of kidney cyst formation after loss of Pkd1. Nat Med 2007 ; 13 : 1490–1495. [CrossRef] [PubMed] [Google Scholar]
  24. Lantinga-van Leeuwen IS, Leonhard WN, van der Wal A, et al. Kidney-specific inactivation of the Pkd1 gene induces rapid cyst formation in developing kidneys and a slow onset of disease in adult mice. Hum Mol Genet 2007 ; 16 : 3188–3196. [CrossRef] [PubMed] [Google Scholar]
  25. Davenport JR, Watts AJ, Roper VC, et al. Disruption of intraflagellar transport in adult mice leads to obesity and slow-onset cystic kidney disease. Curr Biol 2007 ; 17 : 1586–1594. [CrossRef] [PubMed] [Google Scholar]
  26. Patel V, Li L, Cobo-Stark P, et al. Acute kidney injury and aberrant planar cell polarity induce cyst formation in mice lacking renal cilia. Hum Mol Genet 2008 ; 17 : 1578–1590. [CrossRef] [PubMed] [Google Scholar]
  27. Menezes LF, Germino GG. Polycystic kidney disease, cilia, and planar polarity. Methods Cell Biol 2009 ; 94 : 273–297. [CrossRef] [PubMed] [Google Scholar]
  28. Lin F, Hiesberger T, Cordes K, et al. Kidney-specific inactivation of the KIF3A subunit of kinesin-II inhibits renal ciliogenesis and produces polycystic kidney disease. Proc Natl Acad Sci USA 2003 ; 100 : 5286–5291. [CrossRef] [Google Scholar]
  29. Hopp K, Ward CJ, Hommerding CJ, et al. Functional polycystin-1 dosage governs autosomal dominant polycystic kidney disease severity. J Clin Invest 2012 ; 122 : 4257–4273. [CrossRef] [PubMed] [Google Scholar]
  30. Chi L, Galtseva A, Chen L, et al. Kif3a controls murine nephron number via GLI3 repressor, cell survival, gene expression in a lineage-specific manner. PloS One 2013 ; 8 : e65448. [CrossRef] [PubMed] [Google Scholar]
  31. Zhou J. Polycystins and primary cilia: primers for cell cycle progression. Annu Rev Physiol 2009 ; 71 : 83–113. [CrossRef] [PubMed] [Google Scholar]
  32. Patel A. The Primary cilium calcium channels and their role in flow sensing. Pflugers Arch 2014 ; Doi : 10.1007/s00424-014-1516-0. [PubMed] [Google Scholar]
  33. Sharif-Naeini R, Folgering JH, Bichet D, et al. Polycystin-1 and -2 dosage regulates pressure sensing. Cell 2009 ; 139 : 587–596. [CrossRef] [PubMed] [Google Scholar]
  34. Nauli SM, Alenghat FJ, Luo Y, et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 2003 ; 33 : 129–137. [CrossRef] [PubMed] [Google Scholar]
  35. Choi YH, Suzuki A, Hajarnis S, et al. Polycystin-2 and phosphodiesterase 4C are components of a ciliary A-kinase anchoring protein complex that is disrupted in cystic kidney diseases. Proc Natl Acad Sci USA 2011 ; 108 : 10679–10684. [CrossRef] [Google Scholar]
  36. Torres VE, Harris PC. Strategies targeting cAMP signaling in the treatment of polycystic kidney disease. J Am Soc Nephrol 2014 ; 25 : 18–32. [CrossRef] [PubMed] [Google Scholar]
  37. Boletta A., Emerging evidence of a link between the polycystins, the mTOR pathways. PathoGenetics 2009 ; 2 : 6. [CrossRef] [PubMed] [Google Scholar]
  38. Gattone VH, 2nd, Sinders RM, Hornberger TA, Robling AG. Late progression of renal pathology and cyst enlargement is reduced by rapamycin in a mouse model of nephronophthisis. Kidney Int 2009 ; 76 : 178–182. [CrossRef] [PubMed] [Google Scholar]
  39. Boehlke C, Kotsis F, Patel V, et al. Primary cilia regulate mTORC1 activity and cell size through Lkb1. Nat Cell Biol 2010 ; 12 : 1115–1122. [CrossRef] [PubMed] [Google Scholar]
  40. Ma M, Tian X, Igarashi P, et al. Loss of cilia suppresses cyst growth in genetic models of autosomal dominant polycystic kidney disease. Nat Genet 2013 ; 45 : 1004–1012. [CrossRef] [PubMed] [Google Scholar]
  41. Sharma N, Malarkey EB, Berbari NF, et al. Proximal tubule proliferation is insufficient to induce rapid cyst formation after cilia disruption. J Am Soc Nephrol 2013 ; 24 : 456–464. [CrossRef] [PubMed] [Google Scholar]
  42. Koch A, Poirier F, Jacob R, Delacour D. Galectin-3, a novel centrosome-associated protein, required for epithelial morphogenesis. Mol Biol Cell 2010 ; 21 : 219–231. [CrossRef] [PubMed] [Google Scholar]
  43. Vijayakumar S, Dang S, Marinkovich MP, et al. Aberrant expression of laminin-332 promotes cell proliferation and cyst growth in ARPKD. Am J Physiol Renal Physiol 2014 ; 306 : F640–F654. [CrossRef] [PubMed] [Google Scholar]
  44. Drummond IA. Polycystins, focal adhesions and extracellular matrix interactions. Biochim Biophys Acta 2011 ; 1812 : 1322–1326. [CrossRef] [PubMed] [Google Scholar]
  45. Yao G, Su X, Nguyen V, et al. Polycystin-1 regulates actin cytoskeleton organization and directional cell migration through a novel PC1-pacsin 2-N-wasp complex. Hum Mol Genet 2014 ; 23 : 2769–2779. [CrossRef] [PubMed] [Google Scholar]
  46. Fischer E, Legue E, Doyen A, et al. Defective planar cell polarity in polycystic kidney disease. Nat Genet 2006 ; 38 : 21–23. [CrossRef] [PubMed] [Google Scholar]
  47. Nigg EA, Stearns T. The centrosome cycle: Centriole biogenesis, duplication and inherent asymmetries. Nat Cell Biol 2011 ; 13 : 1154–1160. [CrossRef] [PubMed] [Google Scholar]
  48. Karner CM, Chirumamilla R, Aoki S, et al. Wnt9b signaling regulates planar cell polarity and kidney tubule morphogenesis. Nat Genet 2009 ; 41 : 793–799. [CrossRef] [PubMed] [Google Scholar]
  49. Nishio S, Tian X, Gallagher AR, et al. Loss of oriented cell division does not initiate cyst formation. J Am Soc Nephrol 2010 ; 21 : 295–302. [CrossRef] [PubMed] [Google Scholar]
  50. Lienkamp SS, Liu K, Karner CM, et al. Vertebrate kidney tubules elongate using a planar cell polarity-dependent, rosette-based mechanism of convergent extension. Nat Genet 2012 ; 44 : 1382–1387. [CrossRef] [PubMed] [Google Scholar]
  51. Vasilyev A, Liu Y, Mudumana S, et al. Collective cell migration drives morphogenesis of the kidney nephron. PLoS Biol 2009 ; 7 : e9. [CrossRef] [PubMed] [Google Scholar]
  52. Castelli M, Boca M, Chiaravalli M, et al. Polycystin-1 binds Par3/aPKC, controls convergent extension during renal tubular morphogenesis. Nat Commun 2013 ; 4 : 2658. [CrossRef] [PubMed] [Google Scholar]
  53. Tran PV, Sharma M, Li X, Calvet JP. Developmental signaling: Does it bridge the gap between cilia dysfunction and renal cystogenesis ?. Birth Defects Res C Embryo Today 2014 ; 102 : 159–173. [CrossRef] [PubMed] [Google Scholar]
  54. Cain JE, Islam E, Haxho F, et al. GLI3 repressor controls nephron number via regulation of Wnt11, Ret in ureteric tip cells. PloS One 2009 ; 4 : e7313. [CrossRef] [PubMed] [Google Scholar]
  55. Tran PV, Talbott GC, Turbe-Doan A, et al. Downregulating hedgehog signaling reduces renal ccystogenic potential of mouse models. J Am Soc Nephrol 2014 ; Doi : 10.1681/ASN.2013070735. [Google Scholar]
  56. Li B, Rauhauser AA, Dai J, et al. Increased hedgehog signaling in postnatal kidney results in aberrant activation of nephron developmental programs. Hum Mol Genet 2011 ; 20 : 4155–4166. [CrossRef] [PubMed] [Google Scholar]
  57. Chan SK, Riley PR, Price KL, et al. Corticosteroid-induced kidney dysmorphogenesis is associated with deregulated expression of known cystogenic molecules, as well as Indian hedgehog. Am J Physiol Renal Physiol 2010 ; 298 : F346–F356. [CrossRef] [PubMed] [Google Scholar]
  58. Simons M, Gloy J, Ganner A, et al. Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways. Nat Genet 2005 ; 37 : 537–543. [CrossRef] [PubMed] [Google Scholar]
  59. Lancaster MA, Gleeson JG. Cystic kidney disease: the role of Wnt signaling. Trends Mol Med 2010 ; 16 : 349–360. [CrossRef] [PubMed] [Google Scholar]
  60. Sugiyama N, Tsukiyama T, Yamaguchi TP, Yokoyama T. The canonical Wnt signaling pathway is not involved in renal cyst development in the kidneys of inv mutant mice. Kidney Int 2011 ; 79 : 957–965. [CrossRef] [PubMed] [Google Scholar]
  61. Miller MM, Iglesias DM, Zhang Z, et al. T-cell factor/beta-catenin activity is suppressed in two different models of autosomal dominant polycystic kidney disease. Kidney Int 2011 ; 80 : 146–153. [CrossRef] [PubMed] [Google Scholar]
  62. Burckle C, Gaude HM, Vesque C, et al. Control of the Wnt pathways by nephrocystin-4 is required for morphogenesis of the zebrafish pronephros. Hum Mol Genet 2011 ; 20 : 2611–2627. [CrossRef] [PubMed] [Google Scholar]
  63. Yates LL, Papakrivopoulou J, Long DA, et al. The planar cell polarity gene Vangl2 is required for mammalian kidney-branching morphogenesis and glomerular maturation. Hum Mol Genet 2010 ; 19 : 4663–4676. [CrossRef] [PubMed] [Google Scholar]
  64. Mao Y, Mulvaney J, Zakaria S, et al. Characterization of a Dchs1 mutant mouse reveals requirements for Dchs1-Fat4 signaling during mammalian development. Development 2011 ; 138 : 947–957. [CrossRef] [PubMed] [Google Scholar]
  65. Saburi S, Hester I, Goodrich L, McNeill H. Functional interactions between Fat family cadherins in tissue morphogenesis and planar polarity. Development 2012 ; 139 : 1806–1820. [CrossRef] [PubMed] [Google Scholar]
  66. Brown NE, Murcia NS. Delayed cystogenesis and increased ciliogenesis associated with the re-expression of polaris in Tg737 mutant mice. Kidney Int 2003 ; 63 : 1220–1229. [CrossRef] [PubMed] [Google Scholar]
  67. Rowe I, Chiaravalli M, Mannella V, et al. Defective glucose metabolism in polycystic kidney disease identifies a new therapeutic strategy. Nat Med 2014 ; 19 : 488–493. [CrossRef] [Google Scholar]
  68. Nagalakshmi VK, Ren Q, Pugh MM, et al. Dicer regulates the development of nephrogenic and ureteric compartments in the mammalian kidney. Kidney Int 2011 ; 79 : 317–330. [CrossRef] [PubMed] [Google Scholar]
  69. Sharma P, McNeill H. Fat and Dachsous cadherins. Prog Mol Biol Transl Sci 2013 ; 116 : 215–235. [CrossRef] [PubMed] [Google Scholar]
  70. Bachmann-Gagescu R. Complexité génétique des ciliopathies et identification de nouveaux gènes. Med Sci (Paris) 2014 ; 30 : 1011–1023. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  71. Fort C, Bastin P. Élongation de l’axonème et dynamique du transport intraflagellaire. Med Sci (Paris) 2014 ; 30 : 955–961. [Google Scholar]
  72. Taulet N, Delaval B. De nouvelles fonctions extraciliaires pour les protéines ciliaires. Quelles conséquences sur l’apparition de ciliopathies ? Med Sci (Paris) 2014 ; 30 : 1040–1050. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  73. Ezan J, Montcouquiol M. Les liens multiples entre les cils et la polarité planaire cellulaire. Med Sci (Paris) 2014 ; 30 : 1004–1010. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  74. Laclef C. Le cil primaire, orchestrateur de la morphogenèse cérébrale. Med Sci (Paris) 2014 ; 30 : 980–990. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.