Free Access
Issue |
Med Sci (Paris)
Volume 30, Number 4, Avril 2014
|
|
---|---|---|
Page(s) | 385 - 390 | |
Section | Microenvironnements tumoraux : conflictuels et complémentaires | |
DOI | https://doi.org/10.1051/medsci/20143004011 | |
Published online | 05 May 2014 |
- De Wever O, Mareel M. Role of tissue stroma in cancer cell invasion. J Pathol 2003 ; 200 : 429–447. [CrossRef] [PubMed] [Google Scholar]
- Mueller MM, Fusenig NE. Friends or foes - bipolar effects of the tumour stroma in cancer. Nat Rev Cancer 2004 ; 4 : 839–849. [CrossRef] [PubMed] [Google Scholar]
- Lu P, Weaver VM, Werb Z. The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol 2012 ; 196 : 395–406. [CrossRef] [PubMed] [Google Scholar]
- Bissell MJ, Hines WC. Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med 2011 ; 17 : 320–329. [CrossRef] [PubMed] [Google Scholar]
- Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin Oncol 2002 ; 29 : 15–18. [CrossRef] [PubMed] [Google Scholar]
- Motrescu ER, Rio MC. Cancer cells, adipocytes and matrix metalloproteinase 11: a vicious tumor progression cycle. Biol Chem 2008 ; 389 : 1037–1041. [CrossRef] [PubMed] [Google Scholar]
- Dirat B, Bochet L, Dabek M, et al. Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res 2011 ; 71 : 2455–2465. [CrossRef] [PubMed] [Google Scholar]
- Tan J, Buache E, Chenard MP, et al. Adipocyte is a non-trivial, dynamic partner of breast cancer cells. Int J Dev Biol 2011 ; 55 : 851–859. [CrossRef] [PubMed] [Google Scholar]
- Wang CS, Tetu B. Stromelysin-3 expression by mammary tumor-associated fibroblasts under in vitro breast cancer cell induction. Int J Cancer 2002 ; 99 : 792–799. [CrossRef] [PubMed] [Google Scholar]
- Fukino K, Shen L, Matsumoto S, et al. Combined total genome loss of heterozygosity scan of breast cancer stroma and epithelium reveals multiplicity of stromal targets. Cancer Res 2004 ; 64 : 7231–7236. [CrossRef] [PubMed] [Google Scholar]
- Haviv I, Polyak K, Qiu W, et al. Origin of carcinoma associated fibroblasts. Cell Cycle 2009 ; 8 : 589–595. [CrossRef] [PubMed] [Google Scholar]
- Polanska UM, Orimo A. Carcinoma-associated fibroblasts: non neoplastic tumour-promoting mesenchymal cells. J Cell Physiol 2013 ; 228 : 1651–1657. [CrossRef] [PubMed] [Google Scholar]
- Basset P, Bellocq JP, Lefebvre O, et al. Stromelysin-3: a paradigm for stroma-derived factors implicated in carcinoma progression. Crit Rev Oncol Hematol 1997 ; 26 : 43–53. [CrossRef] [PubMed] [Google Scholar]
- Masson R, Lefebvre O, Noel A, et al. In vivo evidence that the stromelysin-3 metalloproteinase contributes in a paracrine manner to epithelial cell malignancy. J Cell Biol 1998 ; 140 : 1535–1541. [CrossRef] [PubMed] [Google Scholar]
- Jacob MP. Matrice extracellulaire et vieillissement vasculaire. Med Sci (Paris) 2006 ; 22 : 273–278. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Marastoni S, Ligresti G, Lorenzon E, et al. Extracellular matrix: a matter of life and death. Connect Tissue Res 2008 ; 49 : 203–206. [CrossRef] [PubMed] [Google Scholar]
- Goetz JG, Minguet S, Navarro-Lerida I, et al. Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis. Cell 2011 ; 146 : 148–163. [CrossRef] [PubMed] [Google Scholar]
- Paszek MJ, Zahir N, Johnson KR, et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 2005 ; 8 : 241–254. [CrossRef] [PubMed] [Google Scholar]
- Brezillon S, Pietraszek K, Maquart FX, et al. Lumican effects in the control of tumour progression and their links with metalloproteinases and integrins. FEBS J 2013 ; 280 : 2369–2381. [CrossRef] [PubMed] [Google Scholar]
- Park J, Scherer PE. Adipocyte-derived endotrophin promotes malignant tumor progression. J Clin Invest 2012 ; 122 : 4243–4256. [CrossRef] [PubMed] [Google Scholar]
- Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 2010 ; 141 : 52–67. [CrossRef] [PubMed] [Google Scholar]
- Finak G, Bertos N, Pepin F, et al. Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 2008 ; 14 : 518–527. [CrossRef] [PubMed] [Google Scholar]
- Beck AH, Espinosa I, Gilks CB, et al. The fibromatosis signature defines a robust stromal response in breast carcinoma. Lab Invest 2008 ; 88 : 591–601. [CrossRef] [PubMed] [Google Scholar]
- Paik S, Shak S, Tang G, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 2004 ; 351 : 2817–2826. [CrossRef] [PubMed] [Google Scholar]
- Farmer P, Bonnefoi H, Anderle P, et al. A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer. Nat Med 2009 ; 15 : 68–74. [CrossRef] [PubMed] [Google Scholar]
- Brennen WN, Rosen DM, Wang H, et al. Targeting carcinoma-associated fibroblasts within the tumor stroma with a fibroblast activation protein-activated prodrug. J Natl Cancer Inst 2012 ; 104 : 1320–1334. [CrossRef] [PubMed] [Google Scholar]
- Coussens LM, Fingleton B, Matrisian LM. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 2002 ; 295 : 2387–2392. [CrossRef] [PubMed] [Google Scholar]
- Buache E, Rio MC. New prospects for matrix metalloproteinase targeting in cancer Therapy. In : Behrendt M, ed. Matrix proteases in health and disease. New York : Wiley-VCH, 2012 : 373–388. [CrossRef] [Google Scholar]
- Thompson CB, Shepard HM, O’Connor PM, et al. Enzymatic depletion of tumor hyaluronan induces antitumor responses in preclinical animal models. Mol Cancer Ther 2010 ; 9 : 3052–3064. [CrossRef] [PubMed] [Google Scholar]
- Paget S. The distribution of secondary growths in cancer of the breast. Lancet 1889 ; 133 : 571–573. [CrossRef] [Google Scholar]
- Fridman WH, Sautès-Fridman C. Le microenvironnement tumoral : matrice nourricière, champ de bataille etcible thérapeutique des cancers. Med Sci (Paris) 2014 ; 30 : 359–365. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Provot S. Contrôle de la croissance et de la dissémination tumorales par le microenvironnement : certitudes et hypothèses émergentes. Med Sci (Paris) 2014 ; 30 : 366–371. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Albrengues J, Meneguzzi G, Gaggioli C. L’invasion des cellules tumorales : quand les fibroblastes s’en mêlent. Med Sci (Paris) 2014 ; 30 : 391–397. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Le Guellec S, Duprez-Paumier R, Lacroix-Triki M. Microenvironnement tumoral : la vision du pathologiste. Med Sci (Paris) 2014 ; 30 : 372–377. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Azzi S, Gavard J. Vaisseaux sanguins et tumeurs ou l’art du dialogue. Med Sci (Paris) 2014 ; 30 : 408–414. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Garrido-Urbani S, Jaquet V, Imhof BA. ERO, NADPH oxydases et vascularisation des tumeurs. Med Sci (Paris) 2014 ; 30 : 415–421. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Laurent V, Nieto L, Philippe Valet P, Muller C. Tissu adipeux et cancer : une association à haut risque. Med Sci (Paris) 2014 ; 30 : 398–404. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Borriello L, DeClerck YA. Le microenvironnement tumoral et la résistance thérapeutique. Med Sci (Paris) 2014 ; 30 : 445–451. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.