Accès gratuit
Numéro
Med Sci (Paris)
Volume 30, Numéro 4, Avril 2014
Page(s) 385 - 390
Section Microenvironnements tumoraux : conflictuels et complémentaires
DOI https://doi.org/10.1051/medsci/20143004011
Publié en ligne 5 mai 2014
  1. De Wever O, Mareel M. Role of tissue stroma in cancer cell invasion. J Pathol 2003 ; 200 : 429–447. [CrossRef] [PubMed]
  2. Mueller MM, Fusenig NE. Friends or foes - bipolar effects of the tumour stroma in cancer. Nat Rev Cancer 2004 ; 4 : 839–849. [CrossRef] [PubMed]
  3. Lu P, Weaver VM, Werb Z. The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol 2012 ; 196 : 395–406. [CrossRef] [PubMed]
  4. Bissell MJ, Hines WC. Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med 2011 ; 17 : 320–329. [CrossRef] [PubMed]
  5. Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin Oncol 2002 ; 29 : 15–18. [CrossRef] [PubMed]
  6. Motrescu ER, Rio MC. Cancer cells, adipocytes and matrix metalloproteinase 11: a vicious tumor progression cycle. Biol Chem 2008 ; 389 : 1037–1041. [CrossRef] [PubMed]
  7. Dirat B, Bochet L, Dabek M, et al. Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res 2011 ; 71 : 2455–2465. [CrossRef] [PubMed]
  8. Tan J, Buache E, Chenard MP, et al. Adipocyte is a non-trivial, dynamic partner of breast cancer cells. Int J Dev Biol 2011 ; 55 : 851–859. [CrossRef] [PubMed]
  9. Wang CS, Tetu B. Stromelysin-3 expression by mammary tumor-associated fibroblasts under in vitro breast cancer cell induction. Int J Cancer 2002 ; 99 : 792–799. [CrossRef] [PubMed]
  10. Fukino K, Shen L, Matsumoto S, et al. Combined total genome loss of heterozygosity scan of breast cancer stroma and epithelium reveals multiplicity of stromal targets. Cancer Res 2004 ; 64 : 7231–7236. [CrossRef] [PubMed]
  11. Haviv I, Polyak K, Qiu W, et al. Origin of carcinoma associated fibroblasts. Cell Cycle 2009 ; 8 : 589–595. [CrossRef] [PubMed]
  12. Polanska UM, Orimo A. Carcinoma-associated fibroblasts: non neoplastic tumour-promoting mesenchymal cells. J Cell Physiol 2013 ; 228 : 1651–1657. [CrossRef] [PubMed]
  13. Basset P, Bellocq JP, Lefebvre O, et al. Stromelysin-3: a paradigm for stroma-derived factors implicated in carcinoma progression. Crit Rev Oncol Hematol 1997 ; 26 : 43–53. [CrossRef] [PubMed]
  14. Masson R, Lefebvre O, Noel A, et al. In vivo evidence that the stromelysin-3 metalloproteinase contributes in a paracrine manner to epithelial cell malignancy. J Cell Biol 1998 ; 140 : 1535–1541. [CrossRef] [PubMed]
  15. Jacob MP. Matrice extracellulaire et vieillissement vasculaire. Med Sci (Paris) 2006 ; 22 : 273–278. [CrossRef] [EDP Sciences] [PubMed]
  16. Marastoni S, Ligresti G, Lorenzon E, et al. Extracellular matrix: a matter of life and death. Connect Tissue Res 2008 ; 49 : 203–206. [CrossRef] [PubMed]
  17. Goetz JG, Minguet S, Navarro-Lerida I, et al. Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis. Cell 2011 ; 146 : 148–163. [CrossRef] [PubMed]
  18. Paszek MJ, Zahir N, Johnson KR, et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 2005 ; 8 : 241–254. [CrossRef] [PubMed]
  19. Brezillon S, Pietraszek K, Maquart FX, et al. Lumican effects in the control of tumour progression and their links with metalloproteinases and integrins. FEBS J 2013 ; 280 : 2369–2381. [CrossRef] [PubMed]
  20. Park J, Scherer PE. Adipocyte-derived endotrophin promotes malignant tumor progression. J Clin Invest 2012 ; 122 : 4243–4256. [CrossRef] [PubMed]
  21. Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 2010 ; 141 : 52–67. [CrossRef] [PubMed]
  22. Finak G, Bertos N, Pepin F, et al. Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 2008 ; 14 : 518–527. [CrossRef] [PubMed]
  23. Beck AH, Espinosa I, Gilks CB, et al. The fibromatosis signature defines a robust stromal response in breast carcinoma. Lab Invest 2008 ; 88 : 591–601. [CrossRef] [PubMed]
  24. Paik S, Shak S, Tang G, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 2004 ; 351 : 2817–2826. [CrossRef] [PubMed]
  25. Farmer P, Bonnefoi H, Anderle P, et al. A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer. Nat Med 2009 ; 15 : 68–74. [CrossRef] [PubMed]
  26. Brennen WN, Rosen DM, Wang H, et al. Targeting carcinoma-associated fibroblasts within the tumor stroma with a fibroblast activation protein-activated prodrug. J Natl Cancer Inst 2012 ; 104 : 1320–1334. [CrossRef] [PubMed]
  27. Coussens LM, Fingleton B, Matrisian LM. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 2002 ; 295 : 2387–2392. [CrossRef] [PubMed]
  28. Buache E, Rio MC. New prospects for matrix metalloproteinase targeting in cancer Therapy. In : Behrendt M, ed. Matrix proteases in health and disease. New York : Wiley-VCH, 2012 : 373–388. [CrossRef]
  29. Thompson CB, Shepard HM, O’Connor PM, et al. Enzymatic depletion of tumor hyaluronan induces antitumor responses in preclinical animal models. Mol Cancer Ther 2010 ; 9 : 3052–3064. [CrossRef] [PubMed]
  30. Paget S. The distribution of secondary growths in cancer of the breast. Lancet 1889 ; 133 : 571–573. [CrossRef]
  31. Fridman WH, Sautès-Fridman C. Le microenvironnement tumoral : matrice nourricière, champ de bataille etcible thérapeutique des cancers. Med Sci (Paris) 2014 ; 30 : 359–365. [CrossRef] [EDP Sciences] [PubMed]
  32. Provot S. Contrôle de la croissance et de la dissémination tumorales par le microenvironnement : certitudes et hypothèses émergentes. Med Sci (Paris) 2014 ; 30 : 366–371. [CrossRef] [EDP Sciences] [PubMed]
  33. Albrengues J, Meneguzzi G, Gaggioli C. L’invasion des cellules tumorales : quand les fibroblastes s’en mêlent. Med Sci (Paris) 2014 ; 30 : 391–397. [CrossRef] [EDP Sciences] [PubMed]
  34. Le Guellec S, Duprez-Paumier R, Lacroix-Triki M. Microenvironnement tumoral : la vision du pathologiste. Med Sci (Paris) 2014 ; 30 : 372–377. [CrossRef] [EDP Sciences] [PubMed]
  35. Azzi S, Gavard J. Vaisseaux sanguins et tumeurs ou l’art du dialogue. Med Sci (Paris) 2014 ; 30 : 408–414. [CrossRef] [EDP Sciences] [PubMed]
  36. Garrido-Urbani S, Jaquet V, Imhof BA. ERO, NADPH oxydases et vascularisation des tumeurs. Med Sci (Paris) 2014 ; 30 : 415–421. [CrossRef] [EDP Sciences] [PubMed]
  37. Laurent V, Nieto L, Philippe Valet P, Muller C. Tissu adipeux et cancer : une association à haut risque. Med Sci (Paris) 2014 ; 30 : 398–404. [CrossRef] [EDP Sciences] [PubMed]
  38. Borriello L, DeClerck YA. Le microenvironnement tumoral et la résistance thérapeutique. Med Sci (Paris) 2014 ; 30 : 445–451. [CrossRef] [EDP Sciences] [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.