Free Access
Issue
Med Sci (Paris)
Volume 30, Number 4, Avril 2014
Page(s) 391 - 397
Section Microenvironnements tumoraux : conflictuels et complémentaires
DOI https://doi.org/10.1051/medsci/20143004012
Published online 05 May 2014
  1. Friedl P, Wolf K. Plasticity of cell migration: a multiscale tuning model. J Cell Biol 2010 ; 188 : 11–19. [CrossRef] [PubMed] [Google Scholar]
  2. Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer 2006 ; 6 : 392–401. [CrossRef] [PubMed] [Google Scholar]
  3. Qian LW, Mizumoto K, Maehara N, et al. Co-cultivation of pancreatic cancer cells with orthotopic tumor-derived fibroblasts: fibroblasts stimulate tumor cell invasion via HGF secretion whereas cancer cells exert a minor regulative effect on fibroblasts HGF production. Cancer Lett 2003 ; 190 : 105–112. [CrossRef] [PubMed] [Google Scholar]
  4. Wilson TR, Fridlyand J, Yan Y, et al. Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature 2012 ; 487 : 505–509. [CrossRef] [PubMed] [Google Scholar]
  5. Ottaviano AJ, Sun L, Ananthanarayanan V, Munshi HG. Extracellular matrix-mediated membrane-type 1 matrix metalloproteinase expression in pancreatic ductal cells is regulated by transforming growth factor-beta1. Cancer Res 2006 ; 66 : 7032–7040. [CrossRef] [PubMed] [Google Scholar]
  6. Mueller MM, Fusenig NE. Friends or foes - Bipolar effects of the tumour stroma in cancer. Nat Rev Cancer 2004 ; 4 : 839–849. [CrossRef] [PubMed] [Google Scholar]
  7. Trimboli AJ, Cantemir-Stone CZ, Li F, et al. Pten in stromal fibroblasts suppresses mammary epithelial tumours. Nature 2009 ; 461 : 1084–1091. [CrossRef] [PubMed] [Google Scholar]
  8. Erez N, Truitt M, Olson P, et al. Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell 2010 ; 17 : 135–147. [CrossRef] [PubMed] [Google Scholar]
  9. Orimo A, Gupta PB, Sgroi DC, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 2005 ; 121 : 335–348. [CrossRef] [PubMed] [Google Scholar]
  10. Butcher DT, Alliston T, Weaver VM. A tense situation: forcing tumour progression. Nat Rev Cancer 2009 ; 9 : 108–122. [CrossRef] [PubMed] [Google Scholar]
  11. Malanchi I, Santamaria-Martínez A, Susanto E, et al. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 2012 ; 481 : 85–89. [CrossRef] [Google Scholar]
  12. Goetz JG, Del Pozo MA. La cavéoline-1 force le remodelage de la matrice extracellulaire. Med Sci (Paris) 2011 ; 27 : 940–944. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  13. Gaggioli C, Hooper S, Hidalgo-Carcedo C, et al. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat Cell Biol 2007 ; 9 : 1392–1400. [CrossRef] [PubMed] [Google Scholar]
  14. Grinnell F. Fibroblast biology in three-dimensional collagen matrices. Trends Cell Biol 2003 ; 13 : 264–269. [CrossRef] [PubMed] [Google Scholar]
  15. Meshel AS, Wei Q, Adelstein RS, Sheetz MP. Basic mechanism of three-dimensional collagen fibre transport by fibroblasts. Nat Cell Biol 2005 ; 7 : 157–164. [CrossRef] [PubMed] [Google Scholar]
  16. Davis J, Burr AR, Davis GF, et al. A TRPC6-dependent pathway for myofibroblast transdifferentiation and wound healing in vivo. Dev Cell 2012 ; 23 : 705–715. [CrossRef] [PubMed] [Google Scholar]
  17. Dees C, Tomcik M, Palumbo-Zerr K, et al. JAK-2 as a novel mediator of the profibrotic effects of transforming growth factor beta in systemic sclerosis. Arthritis Rheum 2012 ; 64 : 3006–3015. [CrossRef] [PubMed] [Google Scholar]
  18. Barker HE, Cox TR, Erler JT. The rationale for targeting the LOX family in cancer. Nat Rev Cancer 2012 ; 12 : 540–552. [CrossRef] [PubMed] [Google Scholar]
  19. Levental, KR, Yu H, Kass L, et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 2009 ; 139 : 891–906. [CrossRef] [PubMed] [Google Scholar]
  20. Wolf K, Wu YI, Liu Y, et al. Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat Cell Biol 2007 ; 9 : 893–904. [CrossRef] [PubMed] [Google Scholar]
  21. D’Angelo M, Billings PC, Pacifici M, et al. Authentic matrix vesicles contain active metalloproteases (MMP): a role for matrix vesicle-associated MMP-13 in activation of transforming growth factor-beta. J Biol Chem 2001 ; 276 : 11347–11353. [CrossRef] [PubMed] [Google Scholar]
  22. Bergers G, Brekken R, McMahon G, et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2000 ; 2 : 737–744. [CrossRef] [PubMed] [Google Scholar]
  23. Lochter A, Galosy S, Muschler J, et al. Matrix metalloproteinase stromelysin-1 triggers a cascade of molecular alterations that leads to stable epithelial-to-mesenchymal conversion and a premalignant phenotype in mammary epithelial cells. J Cell Biol 1997 ; 139 : 1861–1872. [CrossRef] [PubMed] [Google Scholar]
  24. Giannoni E, Bianchini F, Masieri L, et al. Reciprocal activation of prostate cancer cells and cancer-associated fibroblasts stimulates epithelial-mesenchymal transition and cancer stemness. Cancer Res 2010 ; 70 : 6945–6956. [CrossRef] [PubMed] [Google Scholar]
  25. Boire A, Covic L, Agarwal A, et al. PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell 2005 ; 120 : 303–313. [CrossRef] [PubMed] [Google Scholar]
  26. Overall CM, Kleifeld O. Tumour microenvironment - opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat Rev Cancer 2006 ; 6 : 227–239. [CrossRef] [PubMed] [Google Scholar]
  27. Provot S. Contrôle de la croissance et de la dissémination tumorales par le microenvironnement : certitudes et hypothèses émergentes. Med Sci (Paris) 2014 ; 30 : 366–371. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  28. Hubert S, Abastado JP. Les étapes précoces du processus métastatique. Med Sci (Paris) 2014 ; 30 : 378–384. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  29. Buache E, Rio MC. Le stroma tumoral, un terreau fertile pour la cellule cancéreuse. Med Sci (Paris) 2014 ; 30 : 385–390. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  30. Le Guellec S, Duprez-Paumier R, Lacroix-Triki M. Microenvironnement tumoral : la vision du pathologiste. Med Sci (Paris) 2014 ; 30 : 372–377. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.