Free Access
Issue
Med Sci (Paris)
Volume 30, Number 4, Avril 2014
Page(s) 366 - 371
Section Microenvironnements tumoraux : conflictuels et complémentaires
DOI https://doi.org/10.1051/medsci/20143004008
Published online 05 May 2014
  1. Smith C. Cancer shows strength through diversity. Nature 2013 ; 499 : 505–508. [CrossRef] [PubMed] [Google Scholar]
  2. Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 2012 ; 21 : 309–322. [CrossRef] [PubMed] [Google Scholar]
  3. Swartz MA, Iida N, Roberts EW, et al. Tumor microenvironment complexity: emerging roles in cancer therapy. Cancer Res 2012 ; 72 : 2473–2480. [CrossRef] [PubMed] [Google Scholar]
  4. Paget S. The distribution of secondary growths in cancer of the breast. Cancer Metastasis Rev 1989 ; 8 : 98–101. [PubMed] [Google Scholar]
  5. Bissell MJ, Hall HG, Parry G. How does the extracellular matrix direct gene expression? J Theor Biol 1982 ; 99 : 31–68. [CrossRef] [PubMed] [Google Scholar]
  6. Folkman, J. Tumor angiogenesis. Adv Cancer Res 1974 ; 19 : 331–358. [CrossRef] [PubMed] [Google Scholar]
  7. Lu P, Weaver VM, Werb Z. The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol 2012 ; 196 : 395–406. [CrossRef] [PubMed] [Google Scholar]
  8. Semenza GL. Cancer-stromal cell interactions mediated by hypoxia-inducible factors promote angiogenesis, lymphangiogenesis, and metastasis. Oncogene 2013 ; 32 : 4057–4063. [CrossRef] [PubMed] [Google Scholar]
  9. Alitalo A, Detmar M. Interaction of tumor cells and lymphatic vessels in cancer progression. Oncogene 2012 ; 31 : 4499–4508. [CrossRef] [PubMed] [Google Scholar]
  10. De Bock K, Cauwenberghs S, Carmeliet P. Vessel abnormalization: another hallmark of cancer? Molecular mechanisms and therapeutic implications. Curr Opin Genet Dev 2011 ; 21 : 73–79. [CrossRef] [PubMed] [Google Scholar]
  11. Coussens LM, Werb Z. Inflammation and cancer. Nature 2002 ; 420 : 860–867. [CrossRef] [PubMed] [Google Scholar]
  12. Shields JD, Kourtis IC, Tomei AA, et al. Induction of lymphoidlike stroma and immune escape by tumors that express the chemokine CCL21. Science 2010 ; 328 : 749–752. [CrossRef] [PubMed] [Google Scholar]
  13. Rattigan YI, Patel BB, Ackerstaff E, et al. Lactate is a mediator of metabolic cooperation between stromal carcinoma associated fibroblasts and glycolytic tumor cells in the tumor microenvironment. Exp Cell Res 2012 ; 318 : 326–335. [CrossRef] [PubMed] [Google Scholar]
  14. Levental KR, Yu H, Kass L, et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 2009 ; 139 : 891–906. [CrossRef] [PubMed] [Google Scholar]
  15. Chou J, Lin JH, Brenot A, et al. GATA3 suppresses metastasis and modulates the tumour microenvironment by regulating microRNA-29b expression. Nat Cell Biol 2013 ; 15 : 201–213. [CrossRef] [PubMed] [Google Scholar]
  16. Chou J, Provot S, Werb Z. GATA3 in development and cancer differentiation: cells GATA have it! J Cell Physiol 2010 ; 222 : 42–49. [CrossRef] [PubMed] [Google Scholar]
  17. Psaila B, Lyden D. The metastatic niche: adapting the foreign soil. Nat Rev Cancer 2009 ; 9 : 285–293. [CrossRef] [PubMed] [Google Scholar]
  18. Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature 2011 ; 473 : 298–307. [CrossRef] [PubMed] [Google Scholar]
  19. Balkwill F, Charles KA, Mantovani A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 2005 ; 7 : 211–217. [CrossRef] [PubMed] [Google Scholar]
  20. Guerra C, Collado M, Navas C, et al. Pancreatitis-induced inflammation contributes to pancreatic cancer by inhibiting oncogene-induced senescence. Cancer Cell 2011 ; 19 : 728–739. [CrossRef] [PubMed] [Google Scholar]
  21. Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science 2011 ; 331 : 1559–1564. [CrossRef] [PubMed] [Google Scholar]
  22. Lu P, Takai K, Weaver VM, Werb Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol 2011 ; 3. [Google Scholar]
  23. Chen Q, Zhang XH, Massague J. Macrophage binding to receptor VCAM-1 transmits survival signals in breast cancer cells that invade the lungs. Cancer Cell 2011 ; 20 : 538–549. [CrossRef] [PubMed] [Google Scholar]
  24. Shree T, Olson OC, Elie BT, et al. Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer. Genes Dev 2011 ; 25 : 2465–2479. [CrossRef] [PubMed] [Google Scholar]
  25. Bochet L, Meulle A, Imbert S, et al. Cancer-associated adipocytes promotes breast tumor radioresistance. Biochem Biophys Res Commun 2011 ; 411 : 102–106. [CrossRef] [PubMed] [Google Scholar]
  26. Martinez-Outschoorn UE, Sotgia F, Lisanti, MP. Power surge: supporting cells “fuel” cancer cell mitochondria. Cell Metab 2012 ; 15 : 4–5. [CrossRef] [PubMed] [Google Scholar]
  27. Ruffell B, DeNardo DG, Affara, NI, Coussens LM. Lymphocytes in cancer development: polarization towards pro-tumor immunity. Cytokine Growth Factor Rev 2010 ; 21 : 3–10. [CrossRef] [PubMed] [Google Scholar]
  28. Stover DG, Bierie B, Moses HL. A delicate balance: TGF-beta and the tumor microenvironment. J Cell Biochem 2007 ; 101 : 851–861. [CrossRef] [PubMed] [Google Scholar]
  29. Cooke VG, LeBleu VS, Keskin D, et al. Pericyte depletion results in hypoxia-associated epithelial-to-mesenchymal transition and metastasis mediated by met signaling pathway. Cancer Cell 2012 ; 21 : 66–81. [CrossRef] [PubMed] [Google Scholar]
  30. Zhang XH, Jin X, Malladi S, et al. Selection of bone metastasis seeds by mesenchymal signals in the primary tumor stroma. Cell 2013 ; 154 : 1060–1073. [CrossRef] [PubMed] [Google Scholar]
  31. McAllister SS, Gifford AM, Greiner AL, et al. Systemic endocrine instigation of indolent tumor growth requires osteopontin. Cell 2008 ; 133 : 994–1005. [CrossRef] [PubMed] [Google Scholar]
  32. Labelle M, Begum S, Hynes RO. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell 2011 ; 20 : 576–590. [CrossRef] [PubMed] [Google Scholar]
  33. Kaplan RN, Riba RD, Zacharoulis S, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 2005 ; 438 : 820–827. [CrossRef] [PubMed] [Google Scholar]
  34. Hiratsuka S, Watanabe A, Aburatani H, Maru Y. Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol 2006 ; 8 : 1369–1375. [CrossRef] [PubMed] [Google Scholar]
  35. Dougall WC. Molecular pathways: osteoclast-dependent and osteoclast-independent roles of the RANKL/RANK/OPG pathway in tumorigenesis and metastasis. Clin Cancer Res 2012 ; 18 : 326–335. [CrossRef] [PubMed] [Google Scholar]
  36. Raaijmakers MH, Mukherjee S, Guo S, et al. Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 2010 ; 464 : 852–857. [CrossRef] [PubMed] [Google Scholar]
  37. Hamm CA, Stevens JW, Xie H, et al. Microenvironment alters epigenetic, gene expression profiles in Swarm rat chondrosarcoma tumors. BMC Cancer 2010 ; 10 : 471. [CrossRef] [PubMed] [Google Scholar]
  38. Unger M, Weaver VM. The tissue microenvironment as an epigenetic tumor modifier. Methods Mol Biol 2003 ; 223 : 315–347. [PubMed] [Google Scholar]
  39. Fridman WH, Sautès-Fridman C. Le microenvironnement tumoral : matrice nourricière, champ de bataille et cible thérapeutique des cancers. Med Sci (Paris) 2014 ; 30 : 359–365. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  40. Le Guellec S, Duprez-Paumier R, Lacroix-Triki M. Microenvironnement tumoral : la vision du pathologiste. Med Sci (Paris) 2014 ; 30 : 372–377. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  41. Albrengues J, Meneguzzi G, Gaggioli C. L’invasion des cellules tumorales : quand les fibroblastes s’en mêlent. Med Sci (Paris) 2014 ; 30 : 391–397. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  42. Laurent V, Nieto L, Philippe Valet P, Muller C. Tissu adipeux et cancer : une association à haut risque. Med Sci (Paris) 2014 ; 30 : 398–404. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  43. Bruchard M, Ghiringhelli F. Microenvironnement tumoral : cellules régulatrices et cytokines immunosuppressives. Med Sci (Paris) 2014 ; 30 : 429–435. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  44. Galon J, Bindea G, Mlecnik B, et al. Microenvironnement immunitaire et cancer : intérêt de l’Immunoscore pour prédire l’évolution clinique. Med Sci (Paris) 2014 ; 30 : 439–444. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  45. Buache E, Rio MC. Le stroma tumoral, un terreau fertile pour la cellule cancéreuse. Med Sci (Paris) 2014 ; 30 : 385–390. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  46. Azzi S, Gavard J. Vaisseaux sanguins et tumeurs ou l’art du dialogue. Med Sci (Paris) 2014 ; 30 : 408–414. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  47. Razungles J, Cavaillès V, Jalaguier S, Teyssier C. L’effet Warburg. Med Sci (Paris) 2013 ; 29 : 1026–1033. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  48. Borriello L, DeClerck YA. Le microenvironnement tumoral et la résistance thérapeutique. Med Sci (Paris) 2014 ; 30 : 445–451. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  49. Fellouse FA. Les exosomes du stroma permettent au cellules cancéreuses de s’auto-activer. Med Sci (Paris) 2014 ; 30 : 405–407. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  50. Hubert S, Abastado JP. Les étapes précoces du processus métastatique. Med Sci (Paris) 2014 ; 30 : 378–384. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.