Free Access
Med Sci (Paris)
Volume 30, Number 4, Avril 2014
Page(s) 372 - 377
Section Microenvironnements tumoraux : conflictuels et complémentaires
Published online 05 May 2014
  1. Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 2012 ; 21 : 309–322. [CrossRef] [PubMed] [Google Scholar]
  2. Allen M, Louise Jones J. Jekyll and Hyde: the role of the microenvironment on the progression of cancer. J Pathol 2011 ; 223 : 162–176. [PubMed] [Google Scholar]
  3. Boudreau A, van’t Veer LJ, Bissell MJ. An elite hacker: breast tumors exploit the normal microenvironment program to instruct their progression and biological diversity. Cell Adh Migr 2012 ; 6 : 236–248. [CrossRef] [PubMed] [Google Scholar]
  4. Goetz JG. Tumor microenvironment indoctrination: an emerging hallmark of cancer. Cell Adh Migr 2012 ; 6 : 190–192. [CrossRef] [PubMed] [Google Scholar]
  5. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011 ; 144 : 646–674. [CrossRef] [PubMed] [Google Scholar]
  6. Lakhani SR, Ellis IO, Schnitt SJ, Tan PH, van de Vijver MJ. WHO classification of tumours of the breast, 4th ed. Lyon : IARC, 2012. [Google Scholar]
  7. Chang HY, Sneddon JB, Alizadeh AA, et al. Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors, wounds. PLoS Biol 2004 ; 2 : E7. [CrossRef] [PubMed] [Google Scholar]
  8. Bergamaschi A, Tagliabue E, Sorlie T, et al. Extracellular matrix signature identifies breast cancer subgroups with different clinical outcome. J Pathol 2008 ; 214 : 357–367. [CrossRef] [PubMed] [Google Scholar]
  9. Perou CM, Sorlie T, Eisen MB, et al. Molecular portraits of human breast tumours. Nature 2000 ; 406 : 747–752. [CrossRef] [PubMed] [Google Scholar]
  10. Finak G, Bertos N, Pepin F, et al. Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 2008 ; 14 : 518–527. [CrossRef] [PubMed] [Google Scholar]
  11. Tang X. Tumor-associated macrophages as potential diagnostic and prognostic biomarkers in breast cancer. Cancer Lett 2013 ; 332 : 3–10. [CrossRef] [PubMed] [Google Scholar]
  12. Campbell MJ, Tonlaar NY, Garwood ER, et al. Proliferating macrophages associated with high grade, hormone receptor negative breast cancer and poor clinical outcome. Breast Cancer Res Treat 2011 ; 128 : 703–711. [CrossRef] [PubMed] [Google Scholar]
  13. Van den Eynden GG, Colpaert CG, Couvelard A, et al. A fibrotic focus is a prognostic factor and a surrogate marker for hypoxia and (lymph)angiogenesis in breast cancer: review of the literature and proposal on the criteria of evaluation. Histopathology 2007 ; 51 : 440–451. [CrossRef] [PubMed] [Google Scholar]
  14. Servais C, Erez N. From sentinel cells to inflammatory culprits: cancer-associated fibroblasts in tumour-related inflammation. J Pathol 2013 ; 229 : 198–207. [CrossRef] [PubMed] [Google Scholar]
  15. Sharma S, Sharma MC, Sarkar C. Morphology of angiogenesis in human cancer: a conceptual overview, histoprognostic perspective and significance of neoangiogenesis. Histopathology 2005 ; 46 : 481–489. [CrossRef] [PubMed] [Google Scholar]
  16. Hansen S, Grabau DA, Sorensen FB, et al. The prognostic value of angiogenesis by Chalkley counting in a confirmatory study design on 836 breast cancer patients. Clin Cancer Res 2000 ; 6 : 139–146. [PubMed] [Google Scholar]
  17. Rau KM, Huang CC, Chiu TJ, et al. Neovascularization evaluated by CD105 correlates well with prognostic factors in breast cancers. Exp Ther Med 2012 ; 4 : 231–236. [PubMed] [Google Scholar]
  18. Wang YY, Lehuede C, Laurent V, et al. Adipose tissue and breast epithelial cells: a dangerous dynamic duo in breast cancer. Cancer Lett 2012 ; 324 : 142–151. [CrossRef] [PubMed] [Google Scholar]
  19. Finn OJ. Host response in tumor diagnosis and prognosis: importance of immunologists and pathologists alliance. Exp Mol Pathol 2012 ; 93 : 315–318. [CrossRef] [PubMed] [Google Scholar]
  20. Kruger JM, Wemmert C, Sternberger L, et al. Combat or surveillance? Evaluation of the heterogeneous inflammatory breast cancer microenvironment. J Pathol 2013 ; 229 : 569–578. [CrossRef] [PubMed] [Google Scholar]
  21. Guo X, Fan Y, Lang R, et al. Tumor infiltrating lymphocytes differ in invasive micropapillary carcinoma and medullary carcinoma of breast. Mod Pathol 2008 ; 21 : 1101–1107. [CrossRef] [PubMed] [Google Scholar]
  22. Denkert C, Loibl S, Noske A, et al. Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J Clin Oncol 2010 ; 28 : 105–113. [CrossRef] [PubMed] [Google Scholar]
  23. Loi S, Sirtaine N, Piette F, et al. Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02–98. J Clin Oncol 2013 ; 31 : 860–867. [CrossRef] [PubMed] [Google Scholar]
  24. Mahmoud SM, Paish EC, Powe DG, et al. Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J Clin Oncol 2011 ; 29 : 1949–1955. [CrossRef] [PubMed] [Google Scholar]
  25. Baker K, Lachapelle J, Zlobec I, et al. Prognostic significance of CD8+ T lymphocytes in breast cancer depends upon both oestrogen receptor status and histological grade. Histopathology 2011 ; 58 : 1107–1116. [PubMed] [Google Scholar]
  26. Bates GJ, Fox SB, Han C, et al. Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J Clin Oncol 2006 ; 24 : 5373–5380. [CrossRef] [PubMed] [Google Scholar]
  27. Leong PP, Mohammad R, Ibrahim N, et al. Phenotyping of lymphocytes expressing regulatory and effector markers in infiltrating ductal carcinoma of the breast. Immunol Lett 2006 ; 102 : 229–236. [CrossRef] [PubMed] [Google Scholar]
  28. Ladoire S, Mignot G, Dabakuyo S, et al. In situ immune response after neoadjuvant chemotherapy for breast cancer predicts survival. J Pathol 2011 ; 224 : 389–400. [CrossRef] [PubMed] [Google Scholar]
  29. Teschendorff AE, Miremadi A, Pinder SE, et al. An immune response gene expression module identifies a good prognosis subtype in estrogen receptor negative breast cancer. Genome Biol 2007 ; 8 : R157. [CrossRef] [PubMed] [Google Scholar]
  30. Girard JP, Springer TA. High endothelial venules (HEVs): specialized endothelium for lymphocyte migration. Immunol Today 1995 ; 16 : 449–457. [CrossRef] [PubMed] [Google Scholar]
  31. Miyasaka M, Tanaka T. Lymphocyte trafficking across high endothelial venules: dogmas and enigmas. Nat Rev Immunol 2004 ; 4 : 360–370. [CrossRef] [PubMed] [Google Scholar]
  32. Martinet L, Garrido I, Filleron T, et al. Human solid tumors contain high endothelial venules: association with T- and B-lymphocyte infiltration and favorable prognosis in breast cancer. Cancer Res 2011 ; 71 : 5678–5687. [CrossRef] [PubMed] [Google Scholar]
  33. Michie SA, Streeter PR, Bolt PA, et al. The human peripheral lymph node vascular addressin. An inducible endothelial antigen involved in lymphocyte homing. Am J Pathol 1993 ; 143 : 1688–1698. [PubMed] [Google Scholar]
  34. Issa-Nummer Y, Darb-Esfahani S, Loibl S, et al. Prospective validation of immunological infiltrate for prediction of response to neoadjuvant chemotherapy in HER2-negative breast cancer: a substudy of the neoadjuvant GeparQuinto trial. PLoS One 2013 ; 8 : e79775. [CrossRef] [PubMed] [Google Scholar]
  35. Ignatiadis M, Singhal SK, Desmedt C, et al. Gene modules and response to neoadjuvant chemotherapy in breast cancer subtypes: a pooled analysis. J Clin Oncol 2012 ; 30 : 1996–2004. [CrossRef] [PubMed] [Google Scholar]
  36. Farmer P, Bonnefoi H, Anderle P, et al. A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer. Nat Med 2009 ; 15 : 68–74. [CrossRef] [PubMed] [Google Scholar]
  37. Fang H, Declerck YA. Targeting the tumor microenvironment: from understanding pathways to effective clinical trials. Cancer Res 2013 ; 73 : 4965–4977. [CrossRef] [PubMed] [Google Scholar]
  38. Ladoire S, Mignot G, Dalban C, et al. FOXP3 expression in cancer cells and anthracyclines efficacy in patients with primary breast cancer treated with adjuvant chemotherapy in the phase III UNICANCER-PACS 01 trial. Ann Oncol 2012 ; 23 : 2552–2561. [CrossRef] [PubMed] [Google Scholar]
  39. Teutsch SM, Bradley LA, Palomaki GE, et al. The evaluation of genomic applications in practice and prevention (EGAPP) initiative: methods of the EGAPP working group. Genet Med 2009 ; 11 : 3–14. [CrossRef] [PubMed] [Google Scholar]
  40. Fridman WH, Sautès-Fridman C. Le microenvironnement tumoral : matrice nourricière, champ de bataille et cible thérapeutique des cancers. Med Sci (Paris) 2014 ; 30 : 359–365. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  41. Bertucci F, Pascal Finetti P, Cervera N, Birnbaum D. Classification pronostique du cancer du sein et profils d’expression génique sur puces à ADN. Med Sci (Paris) 2008 ; 24 : 599–606. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  42. Laurent V, Nieto L, Valet P, Muller C. Tissu adipeux et cancer : une association à haut risque. Med Sci (Paris) 2014 ; 30 : 398–404. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  43. Galon J, Bindea G, Mlecnik B, et al. Microenvironnement immunitaire et cancer : intérêt de l’Immunoscore pour prédire l’évolution clinique. Med Sci (Paris) 2014 ; 30 : 439–444. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  44. Borriello L, DeClerck YA. Le microenvironnement tumoral et la résistance thérapeutique. Med Sci (Paris) 2014 ; 30 : 445–451. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.