Accès gratuit
Numéro
Med Sci (Paris)
Volume 30, Numéro 4, Avril 2014
Page(s) 366 - 371
Section Microenvironnements tumoraux : conflictuels et complémentaires
DOI https://doi.org/10.1051/medsci/20143004008
Publié en ligne 5 mai 2014
  1. Smith C. Cancer shows strength through diversity. Nature 2013 ; 499 : 505–508. [CrossRef] [PubMed] [Google Scholar]
  2. Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 2012 ; 21 : 309–322. [CrossRef] [PubMed] [Google Scholar]
  3. Swartz MA, Iida N, Roberts EW, et al. Tumor microenvironment complexity: emerging roles in cancer therapy. Cancer Res 2012 ; 72 : 2473–2480. [CrossRef] [PubMed] [Google Scholar]
  4. Paget S. The distribution of secondary growths in cancer of the breast. Cancer Metastasis Rev 1989 ; 8 : 98–101. [PubMed] [Google Scholar]
  5. Bissell MJ, Hall HG, Parry G. How does the extracellular matrix direct gene expression? J Theor Biol 1982 ; 99 : 31–68. [CrossRef] [PubMed] [Google Scholar]
  6. Folkman, J. Tumor angiogenesis. Adv Cancer Res 1974 ; 19 : 331–358. [CrossRef] [PubMed] [Google Scholar]
  7. Lu P, Weaver VM, Werb Z. The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol 2012 ; 196 : 395–406. [CrossRef] [PubMed] [Google Scholar]
  8. Semenza GL. Cancer-stromal cell interactions mediated by hypoxia-inducible factors promote angiogenesis, lymphangiogenesis, and metastasis. Oncogene 2013 ; 32 : 4057–4063. [CrossRef] [PubMed] [Google Scholar]
  9. Alitalo A, Detmar M. Interaction of tumor cells and lymphatic vessels in cancer progression. Oncogene 2012 ; 31 : 4499–4508. [CrossRef] [PubMed] [Google Scholar]
  10. De Bock K, Cauwenberghs S, Carmeliet P. Vessel abnormalization: another hallmark of cancer? Molecular mechanisms and therapeutic implications. Curr Opin Genet Dev 2011 ; 21 : 73–79. [CrossRef] [PubMed] [Google Scholar]
  11. Coussens LM, Werb Z. Inflammation and cancer. Nature 2002 ; 420 : 860–867. [CrossRef] [PubMed] [Google Scholar]
  12. Shields JD, Kourtis IC, Tomei AA, et al. Induction of lymphoidlike stroma and immune escape by tumors that express the chemokine CCL21. Science 2010 ; 328 : 749–752. [CrossRef] [PubMed] [Google Scholar]
  13. Rattigan YI, Patel BB, Ackerstaff E, et al. Lactate is a mediator of metabolic cooperation between stromal carcinoma associated fibroblasts and glycolytic tumor cells in the tumor microenvironment. Exp Cell Res 2012 ; 318 : 326–335. [CrossRef] [PubMed] [Google Scholar]
  14. Levental KR, Yu H, Kass L, et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 2009 ; 139 : 891–906. [CrossRef] [PubMed] [Google Scholar]
  15. Chou J, Lin JH, Brenot A, et al. GATA3 suppresses metastasis and modulates the tumour microenvironment by regulating microRNA-29b expression. Nat Cell Biol 2013 ; 15 : 201–213. [CrossRef] [PubMed] [Google Scholar]
  16. Chou J, Provot S, Werb Z. GATA3 in development and cancer differentiation: cells GATA have it! J Cell Physiol 2010 ; 222 : 42–49. [CrossRef] [PubMed] [Google Scholar]
  17. Psaila B, Lyden D. The metastatic niche: adapting the foreign soil. Nat Rev Cancer 2009 ; 9 : 285–293. [CrossRef] [PubMed] [Google Scholar]
  18. Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature 2011 ; 473 : 298–307. [CrossRef] [PubMed] [Google Scholar]
  19. Balkwill F, Charles KA, Mantovani A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 2005 ; 7 : 211–217. [CrossRef] [PubMed] [Google Scholar]
  20. Guerra C, Collado M, Navas C, et al. Pancreatitis-induced inflammation contributes to pancreatic cancer by inhibiting oncogene-induced senescence. Cancer Cell 2011 ; 19 : 728–739. [CrossRef] [PubMed] [Google Scholar]
  21. Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science 2011 ; 331 : 1559–1564. [CrossRef] [PubMed] [Google Scholar]
  22. Lu P, Takai K, Weaver VM, Werb Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol 2011 ; 3. [Google Scholar]
  23. Chen Q, Zhang XH, Massague J. Macrophage binding to receptor VCAM-1 transmits survival signals in breast cancer cells that invade the lungs. Cancer Cell 2011 ; 20 : 538–549. [CrossRef] [PubMed] [Google Scholar]
  24. Shree T, Olson OC, Elie BT, et al. Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer. Genes Dev 2011 ; 25 : 2465–2479. [CrossRef] [PubMed] [Google Scholar]
  25. Bochet L, Meulle A, Imbert S, et al. Cancer-associated adipocytes promotes breast tumor radioresistance. Biochem Biophys Res Commun 2011 ; 411 : 102–106. [CrossRef] [PubMed] [Google Scholar]
  26. Martinez-Outschoorn UE, Sotgia F, Lisanti, MP. Power surge: supporting cells “fuel” cancer cell mitochondria. Cell Metab 2012 ; 15 : 4–5. [CrossRef] [PubMed] [Google Scholar]
  27. Ruffell B, DeNardo DG, Affara, NI, Coussens LM. Lymphocytes in cancer development: polarization towards pro-tumor immunity. Cytokine Growth Factor Rev 2010 ; 21 : 3–10. [CrossRef] [PubMed] [Google Scholar]
  28. Stover DG, Bierie B, Moses HL. A delicate balance: TGF-beta and the tumor microenvironment. J Cell Biochem 2007 ; 101 : 851–861. [CrossRef] [PubMed] [Google Scholar]
  29. Cooke VG, LeBleu VS, Keskin D, et al. Pericyte depletion results in hypoxia-associated epithelial-to-mesenchymal transition and metastasis mediated by met signaling pathway. Cancer Cell 2012 ; 21 : 66–81. [CrossRef] [PubMed] [Google Scholar]
  30. Zhang XH, Jin X, Malladi S, et al. Selection of bone metastasis seeds by mesenchymal signals in the primary tumor stroma. Cell 2013 ; 154 : 1060–1073. [CrossRef] [PubMed] [Google Scholar]
  31. McAllister SS, Gifford AM, Greiner AL, et al. Systemic endocrine instigation of indolent tumor growth requires osteopontin. Cell 2008 ; 133 : 994–1005. [CrossRef] [PubMed] [Google Scholar]
  32. Labelle M, Begum S, Hynes RO. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell 2011 ; 20 : 576–590. [CrossRef] [PubMed] [Google Scholar]
  33. Kaplan RN, Riba RD, Zacharoulis S, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 2005 ; 438 : 820–827. [CrossRef] [PubMed] [Google Scholar]
  34. Hiratsuka S, Watanabe A, Aburatani H, Maru Y. Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol 2006 ; 8 : 1369–1375. [CrossRef] [PubMed] [Google Scholar]
  35. Dougall WC. Molecular pathways: osteoclast-dependent and osteoclast-independent roles of the RANKL/RANK/OPG pathway in tumorigenesis and metastasis. Clin Cancer Res 2012 ; 18 : 326–335. [CrossRef] [PubMed] [Google Scholar]
  36. Raaijmakers MH, Mukherjee S, Guo S, et al. Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 2010 ; 464 : 852–857. [CrossRef] [PubMed] [Google Scholar]
  37. Hamm CA, Stevens JW, Xie H, et al. Microenvironment alters epigenetic, gene expression profiles in Swarm rat chondrosarcoma tumors. BMC Cancer 2010 ; 10 : 471. [CrossRef] [PubMed] [Google Scholar]
  38. Unger M, Weaver VM. The tissue microenvironment as an epigenetic tumor modifier. Methods Mol Biol 2003 ; 223 : 315–347. [PubMed] [Google Scholar]
  39. Fridman WH, Sautès-Fridman C. Le microenvironnement tumoral : matrice nourricière, champ de bataille et cible thérapeutique des cancers. Med Sci (Paris) 2014 ; 30 : 359–365. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  40. Le Guellec S, Duprez-Paumier R, Lacroix-Triki M. Microenvironnement tumoral : la vision du pathologiste. Med Sci (Paris) 2014 ; 30 : 372–377. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  41. Albrengues J, Meneguzzi G, Gaggioli C. L’invasion des cellules tumorales : quand les fibroblastes s’en mêlent. Med Sci (Paris) 2014 ; 30 : 391–397. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  42. Laurent V, Nieto L, Philippe Valet P, Muller C. Tissu adipeux et cancer : une association à haut risque. Med Sci (Paris) 2014 ; 30 : 398–404. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  43. Bruchard M, Ghiringhelli F. Microenvironnement tumoral : cellules régulatrices et cytokines immunosuppressives. Med Sci (Paris) 2014 ; 30 : 429–435. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  44. Galon J, Bindea G, Mlecnik B, et al. Microenvironnement immunitaire et cancer : intérêt de l’Immunoscore pour prédire l’évolution clinique. Med Sci (Paris) 2014 ; 30 : 439–444. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  45. Buache E, Rio MC. Le stroma tumoral, un terreau fertile pour la cellule cancéreuse. Med Sci (Paris) 2014 ; 30 : 385–390. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  46. Azzi S, Gavard J. Vaisseaux sanguins et tumeurs ou l’art du dialogue. Med Sci (Paris) 2014 ; 30 : 408–414. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  47. Razungles J, Cavaillès V, Jalaguier S, Teyssier C. L’effet Warburg. Med Sci (Paris) 2013 ; 29 : 1026–1033. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  48. Borriello L, DeClerck YA. Le microenvironnement tumoral et la résistance thérapeutique. Med Sci (Paris) 2014 ; 30 : 445–451. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  49. Fellouse FA. Les exosomes du stroma permettent au cellules cancéreuses de s’auto-activer. Med Sci (Paris) 2014 ; 30 : 405–407. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  50. Hubert S, Abastado JP. Les étapes précoces du processus métastatique. Med Sci (Paris) 2014 ; 30 : 378–384. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.