Free Access
Med Sci (Paris)
Volume 29, Number 3, Mars 2013
Page(s) 279 - 285
Section M/S Revues
Published online 27 March 2013
  1. Ando J, Yamamoto K. Effects of shear stress and stretch on endothelial function. Antioxid Redox Signal 2011 ; 15 : 1389–1403. [CrossRef] [PubMed] [Google Scholar]
  2. Miravète M, Dissard R, Klein J, et al. Renal tubular fluid shear stress facilitates monocyte activation towards inflammatory macrophages. Am J Physiol Renal Physiol 2012 ; 302 : F1409–F1417. [CrossRef] [PubMed] [Google Scholar]
  3. Miravète M, Klein J, Besse-Patin A, et al. Renal tubular fluid shear stress promotes endothelial cell activation. Biochem Biophys Res Commun 2011 ; 407 : 813–817. [CrossRef] [PubMed] [Google Scholar]
  4. Duan Y, Weinstein AM, Weinbaum S, et al. Shear stress-induced changes of membrane transporter localization and expression in mouse proximal tubule cells. Proc Natl Acad Sci USA 2010 ; 107 : 21860–21865. [CrossRef] [Google Scholar]
  5. Jang KJ, Cho HS, Kang Do H, et al. Fluid-shear-stress-induced translocation of aquaporin-2 and reorganization of actin cytoskeleton in renal tubular epithelial cells. Integr Biol (Camb) 2011 ; 3 : 134–141. [CrossRef] [PubMed] [Google Scholar]
  6. Holtzclaw JD, Liu L, Grimm PR, et al. Shear stress-induced volume decrease in C11-MDCK cells by BK-alpha/beta4. Am J Physiol Renal Physiol 2010 ; 299 : F507–F516. [CrossRef] [PubMed] [Google Scholar]
  7. Cabral PD, Hong NJ, Garvin JL. Shear stress increases nitric oxide production in thick ascending limbs. Am J Physiol Renal Physiol 2010 ; 299 : F1185–F1192. [CrossRef] [PubMed] [Google Scholar]
  8. Cai Z, Xin J, Pollock DM, et al. Shear stress-mediated NO production in inner medullary collecting duct cells. Am J Physiol Renal Physiol 2000 ; 279 : F270–F274. [PubMed] [Google Scholar]
  9. Flores D, Liu Y, Liu W, et al. Flow induced prostaglandin E2 release regulates Na and K transport in the collecting duct. Am J Physiol Renal Physiol 2012 ; 303 : F632–F638. [CrossRef] [PubMed] [Google Scholar]
  10. Carattino MD, Sheng S, Kleyman TR. Epithelial Na+ channels are activated by laminar shear stress. J Biol Chem 2004 ; 279 : 4120–4126. [CrossRef] [PubMed] [Google Scholar]
  11. Duan Y, Gotoh N, Yan Q, et al. Shear-induced reorganization of renal proximal tubule cell actin cytoskeleton and apical junctional complexes. Proc Natl Acad Sci USA 2008 ; 105 : 11418–11423. [CrossRef] [Google Scholar]
  12. Essig M, Terzi F, Burtin M, et al. Mechanical strains induced by tubular flow affect the phenotype of proximal tubular cells. Am J Physiol Renal Physiol 2001 ; 281 : F751–F762. [PubMed] [Google Scholar]
  13. Essig M, Friedlander G. Tubular shear stress and phenotype of renal proximal tubular cells. J Am Soc Nephrol 2003 ; 14 : S33–S35. [CrossRef] [PubMed] [Google Scholar]
  14. Du Z, Yan Q, Duan Y, et al. Axial flow modulates proximal tubule NHE3 and H-ATPase activities by changing microvillus bending moments. Am J Physiol Renal Physiol 2006 ; 290 : F289–F296. [CrossRef] [PubMed] [Google Scholar]
  15. Du Z, Duan Y, Yan Q, et al. Mechanosensory function of microvilli of the kidney proximal tubule. Proc Natl Acad Sci USA 2004 ; 101 : 13068–13073. [CrossRef] [Google Scholar]
  16. Alenghat FJ, Nauli SM, Kolb R, et al. Global cytoskeletal control of mechanotransduction in kidney epithelial cells. Exp Cell Res 2004 ; 301 : 23–30. [CrossRef] [PubMed] [Google Scholar]
  17. Cattaneo I, Condorelli L, Terrinoni AR, et al. Shear stress reverses dome formation in confluent renal tubular cells. Cell Physiol Biochem 2011 ; 28 : 673–682. [CrossRef] [PubMed] [Google Scholar]
  18. Guo P, Weinstein AM, Weinbaum S. A hydrodynamic mechanosensory hypothesis for brush border microvilli. Am J Physiol Renal Physiol 2000 ; 279 : F698–F712. [PubMed] [Google Scholar]
  19. Weinbaum S, Duan Y, Satlin LM, et al. Mechanotransduction in the renal tubule. Am J Physiol Renal Physiol 2010 ; 299 : F1220–F1236. [CrossRef] [PubMed] [Google Scholar]
  20. Praetorius HA, Spring KR. The renal cell primary cilium functions as a flow sensor. Curr Opin Nephrol Hypertens 2003 ; 12 : 517–520. [CrossRef] [PubMed] [Google Scholar]
  21. Liu W, Xu S, Woda C, et al. Effect of flow and stretch on the [Ca2+]i response of principal and intercalated cells in cortical collecting duct. Am J Physiol Renal Physiol 2003 ; 285 : F998–1012. [PubMed] [Google Scholar]
  22. Nauli SM, Alenghat FJ, Luo Y, et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 2003 ; 33 : 129–137. [CrossRef] [PubMed] [Google Scholar]
  23. Kaysen JH, Campbell WC, Majewski RR, et al. Select de novo gene and protein expression during renal epithelial cell culture in rotating wall vessels is shear stress dependent. J Membr Biol 1999 ; 168 : 77–89. [CrossRef] [PubMed] [Google Scholar]
  24. Motoyoshi Y, Matsusaka T, Saito A, et al. Megalin contributes to the early injury of proximal tubule cells during nonselective proteinuria. Kidney Int 2008 ; 74 : 1262–1269. [CrossRef] [PubMed] [Google Scholar]
  25. Klein J, Miravete M, Buffin-Meyer B, et al. La fibrose tubulo-interstitielle rénale–Menace fantôme ou dernière croisade ? Med Sci (Paris) 2011 ; 27 : 55–61. [Google Scholar]
  26. Kolb RJ, Woost PG, Hopfer U. Membrane trafficking of angiotensin receptor type-1 and mechanochemical signal transduction in proximal tubule cells. Hypertension 2004 ; 44 : 352–359. [CrossRef] [PubMed] [Google Scholar]
  27. Lyon-Roberts B, Strait KA, van Peursem E, et al. Flow regulation of collecting duct endothelin-1 production. Am J Physiol Renal Physiol 2011 ; 300 : F650–F656. [CrossRef] [PubMed] [Google Scholar]
  28. Boffa JJ, Dussaule JC, Ronco P, et al. Maladie rénale chronique, les voies de recherche thérapeutique. Rev Prat 2012 ; 62 : 72–75. [PubMed] [Google Scholar]
  29. Kohan DE, Pritchett Y, Molitch M, et al. Addition of atrasentan to renin-angiotensin system blockade reduces albuminuria in diabetic nephropathy. J Am Soc Nephrol 2011 ; 22 : 763–772. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.