Accès gratuit
Numéro
Med Sci (Paris)
Volume 29, Numéro 3, Mars 2013
Page(s) 279 - 285
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2013293014
Publié en ligne 27 mars 2013
  1. Ando J, Yamamoto K. Effects of shear stress and stretch on endothelial function. Antioxid Redox Signal 2011 ; 15 : 1389–1403. [CrossRef] [PubMed]
  2. Miravète M, Dissard R, Klein J, et al. Renal tubular fluid shear stress facilitates monocyte activation towards inflammatory macrophages. Am J Physiol Renal Physiol 2012 ; 302 : F1409–F1417. [CrossRef] [PubMed]
  3. Miravète M, Klein J, Besse-Patin A, et al. Renal tubular fluid shear stress promotes endothelial cell activation. Biochem Biophys Res Commun 2011 ; 407 : 813–817. [CrossRef] [PubMed]
  4. Duan Y, Weinstein AM, Weinbaum S, et al. Shear stress-induced changes of membrane transporter localization and expression in mouse proximal tubule cells. Proc Natl Acad Sci USA 2010 ; 107 : 21860–21865. [CrossRef]
  5. Jang KJ, Cho HS, Kang Do H, et al. Fluid-shear-stress-induced translocation of aquaporin-2 and reorganization of actin cytoskeleton in renal tubular epithelial cells. Integr Biol (Camb) 2011 ; 3 : 134–141. [CrossRef] [PubMed]
  6. Holtzclaw JD, Liu L, Grimm PR, et al. Shear stress-induced volume decrease in C11-MDCK cells by BK-alpha/beta4. Am J Physiol Renal Physiol 2010 ; 299 : F507–F516. [CrossRef] [PubMed]
  7. Cabral PD, Hong NJ, Garvin JL. Shear stress increases nitric oxide production in thick ascending limbs. Am J Physiol Renal Physiol 2010 ; 299 : F1185–F1192. [CrossRef] [PubMed]
  8. Cai Z, Xin J, Pollock DM, et al. Shear stress-mediated NO production in inner medullary collecting duct cells. Am J Physiol Renal Physiol 2000 ; 279 : F270–F274. [PubMed]
  9. Flores D, Liu Y, Liu W, et al. Flow induced prostaglandin E2 release regulates Na and K transport in the collecting duct. Am J Physiol Renal Physiol 2012 ; 303 : F632–F638. [CrossRef] [PubMed]
  10. Carattino MD, Sheng S, Kleyman TR. Epithelial Na+ channels are activated by laminar shear stress. J Biol Chem 2004 ; 279 : 4120–4126. [CrossRef] [PubMed]
  11. Duan Y, Gotoh N, Yan Q, et al. Shear-induced reorganization of renal proximal tubule cell actin cytoskeleton and apical junctional complexes. Proc Natl Acad Sci USA 2008 ; 105 : 11418–11423. [CrossRef]
  12. Essig M, Terzi F, Burtin M, et al. Mechanical strains induced by tubular flow affect the phenotype of proximal tubular cells. Am J Physiol Renal Physiol 2001 ; 281 : F751–F762. [PubMed]
  13. Essig M, Friedlander G. Tubular shear stress and phenotype of renal proximal tubular cells. J Am Soc Nephrol 2003 ; 14 : S33–S35. [CrossRef] [PubMed]
  14. Du Z, Yan Q, Duan Y, et al. Axial flow modulates proximal tubule NHE3 and H-ATPase activities by changing microvillus bending moments. Am J Physiol Renal Physiol 2006 ; 290 : F289–F296. [CrossRef] [PubMed]
  15. Du Z, Duan Y, Yan Q, et al. Mechanosensory function of microvilli of the kidney proximal tubule. Proc Natl Acad Sci USA 2004 ; 101 : 13068–13073. [CrossRef]
  16. Alenghat FJ, Nauli SM, Kolb R, et al. Global cytoskeletal control of mechanotransduction in kidney epithelial cells. Exp Cell Res 2004 ; 301 : 23–30. [CrossRef] [PubMed]
  17. Cattaneo I, Condorelli L, Terrinoni AR, et al. Shear stress reverses dome formation in confluent renal tubular cells. Cell Physiol Biochem 2011 ; 28 : 673–682. [CrossRef] [PubMed]
  18. Guo P, Weinstein AM, Weinbaum S. A hydrodynamic mechanosensory hypothesis for brush border microvilli. Am J Physiol Renal Physiol 2000 ; 279 : F698–F712. [PubMed]
  19. Weinbaum S, Duan Y, Satlin LM, et al. Mechanotransduction in the renal tubule. Am J Physiol Renal Physiol 2010 ; 299 : F1220–F1236. [CrossRef] [PubMed]
  20. Praetorius HA, Spring KR. The renal cell primary cilium functions as a flow sensor. Curr Opin Nephrol Hypertens 2003 ; 12 : 517–520. [CrossRef] [PubMed]
  21. Liu W, Xu S, Woda C, et al. Effect of flow and stretch on the [Ca2+]i response of principal and intercalated cells in cortical collecting duct. Am J Physiol Renal Physiol 2003 ; 285 : F998–1012. [PubMed]
  22. Nauli SM, Alenghat FJ, Luo Y, et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 2003 ; 33 : 129–137. [CrossRef] [PubMed]
  23. Kaysen JH, Campbell WC, Majewski RR, et al. Select de novo gene and protein expression during renal epithelial cell culture in rotating wall vessels is shear stress dependent. J Membr Biol 1999 ; 168 : 77–89. [CrossRef] [PubMed]
  24. Motoyoshi Y, Matsusaka T, Saito A, et al. Megalin contributes to the early injury of proximal tubule cells during nonselective proteinuria. Kidney Int 2008 ; 74 : 1262–1269. [CrossRef] [PubMed]
  25. Klein J, Miravete M, Buffin-Meyer B, et al. La fibrose tubulo-interstitielle rénale–Menace fantôme ou dernière croisade ? Med Sci (Paris) 2011 ; 27 : 55–61. [CrossRef] [EDP Sciences] [PubMed]
  26. Kolb RJ, Woost PG, Hopfer U. Membrane trafficking of angiotensin receptor type-1 and mechanochemical signal transduction in proximal tubule cells. Hypertension 2004 ; 44 : 352–359. [CrossRef] [PubMed]
  27. Lyon-Roberts B, Strait KA, van Peursem E, et al. Flow regulation of collecting duct endothelin-1 production. Am J Physiol Renal Physiol 2011 ; 300 : F650–F656. [CrossRef] [PubMed]
  28. Boffa JJ, Dussaule JC, Ronco P, et al. Maladie rénale chronique, les voies de recherche thérapeutique. Rev Prat 2012 ; 62 : 72–75. [PubMed]
  29. Kohan DE, Pritchett Y, Molitch M, et al. Addition of atrasentan to renin-angiotensin system blockade reduces albuminuria in diabetic nephropathy. J Am Soc Nephrol 2011 ; 22 : 763–772. [CrossRef] [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.