Accès gratuit
Numéro
Med Sci (Paris)
Volume 29, Numéro 3, Mars 2013
Page(s) 273 - 278
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2013293013
Publié en ligne 27 mars 2013
  1. Corrigan FM, Murray L, Wyatt CL, Shore RF. Diorthosubstituted polychlorinated biphenyls in caudate nucleus in Parkinson’s disease. Exp Neurol 1998 ; 150 : 339–342. [CrossRef] [PubMed] [Google Scholar]
  2. Corrigan FM, Wienburg CL, Shore RF, et al. Organochlorine insecticides in substantia nigra in Parkinson’s disease. J Toxicol Environ Health A 2000 ; 59 : 229–234. [CrossRef] [PubMed] [Google Scholar]
  3. Lush MJ, Li Y, Read DJ, et al. Neuropathy target esterase and a homologous Drosophila neurodegeneration-associated mutant protein contain a novel domain conserved from bacteria to man. Biochem J 1998 ; 332 : 1–4. [PubMed] [Google Scholar]
  4. Sanchez-Santed F, Canadas F, Flores P, et al. Long-term functional neurotoxicity of paraoxon and chlorpyrifos oxon: behavioral and pharmacological evidence. Neurotoxicol Teratol 2004 ; 26 : 304–317. [Google Scholar]
  5. Lotti M, Moretto A. Organophosphate-induced delayed polyneuropathy. Toxicol Rev 2005 ; 24 : 37–49. [CrossRef] [PubMed] [Google Scholar]
  6. Kamel F, Rowland AS, Park LP, et al. Neurobehavioral performance and work experience in Florida farmworkers. Environ Health Perspect 2003 ; 111 : 1765–1772. [CrossRef] [PubMed] [Google Scholar]
  7. Starks SE, Hoppin JA, Kamel F, et al. Peripheral nervous system function and organophosphate pesticide use among licensed pesticide applicators in the Agricultural Health Study. Environ Health Perspect 2012 ; 120 : 515–520. [CrossRef] [PubMed] [Google Scholar]
  8. Sherer TB, Kim JH, Betarbet R, Greenamyre JT. Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation. Exp Neurol 2003 ; 179 : 9–16. [CrossRef] [PubMed] [Google Scholar]
  9. Hoglinger GU, Oertel WH, Hirsch EC. The rotenone model of parkinsonism-the five years inspection. J Neural Transm Suppl 2006 ; (70) : 269–272. [CrossRef] [PubMed] [Google Scholar]
  10. Chaves RS, Melo TQ, Martins SA, Ferrari MF. Protein aggregation containing beta-amyloid, alpha-synuclein, hyperphosphorylated tau in cultured cells of hippocampus, substantia nigra, locus coeruleus after rotenone exposure. BMC Neurosci 2010 ; 11 : 144. [CrossRef] [PubMed] [Google Scholar]
  11. Hoglinger GU, Feger J, Prigent A, et al. Chronic systemic complex I inhibition induces a hypokinetic multisystem degeneration in rats. J Neurochem 2003 ; 84 : 491–502. [CrossRef] [PubMed] [Google Scholar]
  12. McCormack AL, Di Monte DA. Effects of L-dopa and other amino acids against paraquat-induced nigrostriatal degeneration. J Neurochem 2003 ; 85 : 82–86. [CrossRef] [PubMed] [Google Scholar]
  13. Purisai MG, McCormack AL, Cumine S, et al. Microglial activation as a priming event leading to paraquat-induced dopaminergic cell degeneration. Neurobiol Dis 2007 ; 25 : 392–400. [CrossRef] [PubMed] [Google Scholar]
  14. Peng J, Stevenson FF, Oo ML, Andersen JK. Iron-enhanced paraquat-mediated dopaminergic cell death due to increased oxidative stress as a consequence of microglial activation. Free Radic Biol Med 2009 ; 46 : 312–320. [CrossRef] [PubMed] [Google Scholar]
  15. Smeyne RJ, Jackson-Lewis V. The MPTP model of Parkinson’s disease. Brain Res Mol Brain Res 2005 ; 134 : 57–66. [CrossRef] [PubMed] [Google Scholar]
  16. Richardson JR, Quan Y, Sherer TB, et al. Paraquat neurotoxicity is distinct from that of MPTP and rotenone. Toxicol Sci 2005 ; 88 : 193–201. [CrossRef] [PubMed] [Google Scholar]
  17. Ramachandiran S, Hansen JM, Jones DP, et al. Divergent mechanisms of paraquat, MPP+, and rotenone toxicity: oxidation of thioredoxin and caspase-3 activation. Toxicol Sci 2007 ; 95 : 163–171. [CrossRef] [PubMed] [Google Scholar]
  18. Castello PR, Drechsel DA, Patel M. Mitochondria are a major source of paraquat-induced reactive oxygen species production in the brain. J Biol Chem 2007 ; 282 : 14186–14193. [CrossRef] [PubMed] [Google Scholar]
  19. Drechsel DA, Patel M. Differential contribution of the mitochondrial respiratory chain complexes to reactive oxygen species production by redox cycling agents implicated in parkinsonism. Toxicol Sci 2009 ; 112 : 427–434. [CrossRef] [PubMed] [Google Scholar]
  20. Zhang Y, Dawson VL, Dawson TM. Oxidative stress and genetics in the pathogenesis of Parkinson’s disease. Neurobiol Dis 2000 ; 7 : 240–250. [CrossRef] [PubMed] [Google Scholar]
  21. Sherer TB, Richardson JR, Testa CM, et al. Mechanism of toxicity of pesticides acting at complex I: relevance to environmental etiologies of Parkinson’s disease. J Neurochem 2007 ; 100 : 1469–1479. [PubMed] [Google Scholar]
  22. Choi WS, Palmiter RD, Xia Z. Loss of mitochondrial complex I activity potentiates dopamine neuron death induced by microtubule dysfunction in a Parkinson’s disease model. J Cell Biol 2011 ; 192 : 873–882. [CrossRef] [PubMed] [Google Scholar]
  23. Thomas B, Flint B. Molecular insights into Parkinson’s disease. F1000 Reports Med 2011 ; 3 : 7–15. [CrossRef] [Google Scholar]
  24. Kruger R, Kuhn W, Muller T, et al. Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 1998 ; 18 : 106–108. [CrossRef] [PubMed] [Google Scholar]
  25. Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 1997 ; 276 : 2045–2047. [CrossRef] [PubMed] [Google Scholar]
  26. Zarranz JJ, Alegre J, Gomez-Esteban JC, et al. The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 2004 ; 55 : 164–173. [CrossRef] [PubMed] [Google Scholar]
  27. Diaz-Corrales FJ, Asanuma M, Miyazaki I, et al. Rotenone induces aggregation of gamma-tubulin protein and subsequent disorganization of the centrosome: relevance to formation of inclusion bodies and neurodegeneration. Neuroscience 2005 ; 133 : 117–135. [CrossRef] [PubMed] [Google Scholar]
  28. Casarejos MJ, Menendez J, Solano RM, et al. Susceptibility to rotenone is increased in neurons from parkin null mice and is reduced by minocycline. J Neurochem 2006 ; 97 : 934–946. [CrossRef] [PubMed] [Google Scholar]
  29. Kwon HJ, Heo JY, Shim JH, et al. DJ-1 mediates paraquat-induced dopaminergic neuronal cell death. Toxicol Lett 2011 ; 202 : 85–92. [CrossRef] [PubMed] [Google Scholar]
  30. Costa LG. Current issues in organophosphate toxicology. Clin Chim Acta 2006 ; 366 : 1–13. [CrossRef] [PubMed] [Google Scholar]
  31. Tsatsakis AM, Zafiropoulos A, Tzatzarakis MN, et al. Relation of PON1 and CYP1A1 genetic polymorphisms to clinical findings in a cross-sectional study of a Greek rural population professionally exposed to pesticides. Toxicol Lett 2009 ; 186 : 66–72. [CrossRef] [PubMed] [Google Scholar]
  32. Zintzaras E, Hadjigeorgiou GM. Association of paraoxonase 1 gene polymorphisms with risk of Parkinson’s disease: a meta-analysis. J Hum Genet 2004 ; 49 : 474–481. [CrossRef] [PubMed] [Google Scholar]
  33. Manthripragada AD, Costello S, Cockburn MG, et al. Paraoxonase 1, agricultural organophosphate exposure, and Parkinson disease. Epidemiology 2010 ; 21 : 87–94. [CrossRef] [PubMed] [Google Scholar]
  34. Draganov DI, Teiber JF, Speelman A, et al. Human paraoxonases (PON1, PON2, and PON3) are lactonases with overlapping and distinct substrate specificities. J Lipid Res 2005 ; 46 : 1239–1247. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.