Free Access
Med Sci (Paris)
Volume 29, Number 3, Mars 2013
Page(s) 287 - 292
Section M/S Revues
Published online 27 March 2013
  1. Lamoreux ML, Delmas V, Larue L, Bennett D. The colors of mice: a model genetic network. Wiley-Blackwell, 2010. [CrossRef] [Google Scholar]
  2. Larue L, Kumasaka M, Goding CR. Beta-catenin in the melanocyte lineage. Pigment Cell Res 2003 ; 16 : 312–317. [CrossRef] [PubMed] [Google Scholar]
  3. Luciani F, Champeval D, Herbette A, et al. Biological and mathematical modeling of melanocyte development. Development 2011 ; 138 : 3943–3954. [CrossRef] [PubMed] [Google Scholar]
  4. Adameyko I, Lallemend F, Aquino JB, et al. Schwann cell precursors from nerve innervation are a cellular origin of melanocytes in skin. Cell 2009 ; 139 : 366–379. [CrossRef] [PubMed] [Google Scholar]
  5. Pinon P, Wehrle-Haller B. Integrins: versatile receptors controlling melanocyte adhesion, migration and proliferation. Pigment Cell Melanoma Res 2011 ; 24 : 282–294. [CrossRef] [PubMed] [Google Scholar]
  6. Testaz S, Duband JL. Central role of the alpha4beta1 integrin in the coordination of avian truncal neural crest cell adhesion, migration, and survival. Dev Dyn 2001 ; 222 : 127–140. [CrossRef] [PubMed] [Google Scholar]
  7. Kelsh RN, Harris ML, Colanesi S, Erickson CA. Stripes and belly-spots – a review of pigment cell morphogenesis in vertebrates. Semin Cell Dev Biol 2009 ; 20 : 90–104. [CrossRef] [PubMed] [Google Scholar]
  8. Santiago A, Erickson CA. Ephrin-B ligands play a dual role in the control of neural crest cell migration. Development 2002 ; 129 : 3621–3632. [PubMed] [Google Scholar]
  9. Gallagher SJ, Rambow F, Kumasaka M, et al. Beta-catenin inhibits melanocyte migration but induces melanoma metastasis. Oncogene 2012 ; doi: 10.1038/onc.2012.229 [Google Scholar]
  10. Theveneau E, Marchant L, Kuriyama S, et al. Collective chemotaxis requires contact-dependent cell polarity. Dev Cell 2010 ; 19 : 39–53. [CrossRef] [PubMed] [Google Scholar]
  11. Li A, Ma Y, Yu X, et al. Rac1 drives melanoblast organization during mouse development by orchestrating pseudopod-driven motility and cell-cycle progression. Dev Cell 2011 ; 21 : 722–734. [CrossRef] [PubMed] [Google Scholar]
  12. Lindsay CR, Lawn S, Campbell AD, et al. P-Rex1 is required for efficient melanoblast migration, melanoma metastasis. Nat Commun 2011 ; 2 : 555. [CrossRef] [PubMed] [Google Scholar]
  13. Ridley AJ Life at the leading edge. Cell 2011 ; 145 : 1012–1022. [CrossRef] [PubMed] [Google Scholar]
  14. Spiering D, Hodgson L. Dynamics of the Rho-family small GTPases in actin regulation and motility. Cell Adh Migr 2011 ; 5 : 170–180. [CrossRef] [PubMed] [Google Scholar]
  15. Primeau M, Lamarche-Vane N. Coup d’œil sur les petites GTPases Rho. Med Sci (Paris) 2008 ; 24 : 157–162. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  16. Raftopoulou M, Hall A. Cell migration: Rho GTPases lead the way. Dev Biol 2004 ; 265 : 23–32. [CrossRef] [PubMed] [Google Scholar]
  17. Chesarone MA, Goode BL. Actin nucleation and elongation factors: mechanisms and interplay. Curr Opin Cell Biol 2009 ; 21 : 28–37. [CrossRef] [PubMed] [Google Scholar]
  18. Carreira S, Goodall J, Denat L, et al. Mitf regulation of Dia1 controls melanoma proliferation and invasiveness. Genes Dev 2006 ; 20 : 3426–3439. [CrossRef] [PubMed] [Google Scholar]
  19. Sanz-Moreno V, Gadea G, Ahn J, et al. Rac activation and inactivation control plasticity of tumor cell movement. Cell 2008 ; 135 : 510–523. [CrossRef] [PubMed] [Google Scholar]
  20. Friedl P, Wolf K. Plasticity of cell migration: a multiscale tuning model. J Cell Biol 2010 ; 188 : 11–19. [CrossRef] [PubMed] [Google Scholar]
  21. Sahai E, Marshall CJ. Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nat Cell Biol 2003 ; 5 : 711–719. [CrossRef] [PubMed] [Google Scholar]
  22. Sanz-Moreno V, Marshall CJ. The plasticity of cytoskeletal dynamics underlying neoplastic cell migration. Curr Opin Cell Biol 2010 ; 22 : 690–696. [CrossRef] [PubMed] [Google Scholar]
  23. Lammermann T, Sixt M. Mechanical modes of ‘amoeboid’ cell migration. Curr Opin Cell Biol 2009 ; 21 : 636–644. [CrossRef] [PubMed] [Google Scholar]
  24. Charras G, Paluch E. Blebs lead the way: how to migrate without lamellipodia. Nat Rev Mol Cell Biol 2008 ; 9 : 730–736. [CrossRef] [PubMed] [Google Scholar]
  25. Li A, Dawson JC, Forero-Vargas M, et al. The actin-bundling protein fascin stabilizes actin in invadopodia and potentiates protrusive invasion. Curr Biol 2010 ; 20 : 339–345. [CrossRef] [PubMed] [Google Scholar]
  26. Schoumacher M, Goldman RD, Louvard D, Vignjevic DM. Actin, microtubules, and vimentin intermediate filaments cooperate for elongation of invadopodia. J Cell Biol 2010 ; 189 : 541–556. [CrossRef] [PubMed] [Google Scholar]
  27. Gaggioli C, Sahai E. Melanoma invasion – current knowledge and future directions. Pigment Cell Res 2007 ; 20 : 161–172. [CrossRef] [PubMed] [Google Scholar]
  28. Pichot CS, Arvanitis C, Hartig SM, et al. Cdc42-interacting protein 4 promotes breast cancer cell invasion and formation of invadopodia through activation of N-WASp. Cancer Res 2010 ; 70 : 8347–8356. [CrossRef] [PubMed] [Google Scholar]
  29. Pinner S, Jordan P, Sharrock K, et al. Intravital imaging reveals transient changes in pigment production and Brn2 expression during metastatic melanoma dissemination. Cancer Res 2009 ; 69 : 7969–7977. [CrossRef] [PubMed] [Google Scholar]
  30. Kim M, Gans JD, Nogueira C, et al. Comparative oncogenomics identifies NEDD9 as a melanoma metastasis gene. Cell 2006 ; 125 : 1269–1281. [CrossRef] [PubMed] [Google Scholar]
  31. Sabeh F, Shimizu-Hirota R, Weiss SJ. Protease-dependent versus-independent cancer cell invasion programs: three-dimensional amoeboid movement revisited. J Cell Biol 2009 ; 185 : 11–19. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.