Free Access
Med Sci (Paris)
Volume 29, Number 3, Mars 2013
Page(s) 273 - 278
Section M/S Revues
Published online 27 March 2013
  1. Corrigan FM, Murray L, Wyatt CL, Shore RF. Diorthosubstituted polychlorinated biphenyls in caudate nucleus in Parkinson’s disease. Exp Neurol 1998 ; 150 : 339–342. [CrossRef] [PubMed] [Google Scholar]
  2. Corrigan FM, Wienburg CL, Shore RF, et al. Organochlorine insecticides in substantia nigra in Parkinson’s disease. J Toxicol Environ Health A 2000 ; 59 : 229–234. [CrossRef] [PubMed] [Google Scholar]
  3. Lush MJ, Li Y, Read DJ, et al. Neuropathy target esterase and a homologous Drosophila neurodegeneration-associated mutant protein contain a novel domain conserved from bacteria to man. Biochem J 1998 ; 332 : 1–4. [PubMed] [Google Scholar]
  4. Sanchez-Santed F, Canadas F, Flores P, et al. Long-term functional neurotoxicity of paraoxon and chlorpyrifos oxon: behavioral and pharmacological evidence. Neurotoxicol Teratol 2004 ; 26 : 304–317. [Google Scholar]
  5. Lotti M, Moretto A. Organophosphate-induced delayed polyneuropathy. Toxicol Rev 2005 ; 24 : 37–49. [CrossRef] [PubMed] [Google Scholar]
  6. Kamel F, Rowland AS, Park LP, et al. Neurobehavioral performance and work experience in Florida farmworkers. Environ Health Perspect 2003 ; 111 : 1765–1772. [CrossRef] [PubMed] [Google Scholar]
  7. Starks SE, Hoppin JA, Kamel F, et al. Peripheral nervous system function and organophosphate pesticide use among licensed pesticide applicators in the Agricultural Health Study. Environ Health Perspect 2012 ; 120 : 515–520. [CrossRef] [PubMed] [Google Scholar]
  8. Sherer TB, Kim JH, Betarbet R, Greenamyre JT. Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation. Exp Neurol 2003 ; 179 : 9–16. [CrossRef] [PubMed] [Google Scholar]
  9. Hoglinger GU, Oertel WH, Hirsch EC. The rotenone model of parkinsonism-the five years inspection. J Neural Transm Suppl 2006 ; (70) : 269–272. [CrossRef] [PubMed] [Google Scholar]
  10. Chaves RS, Melo TQ, Martins SA, Ferrari MF. Protein aggregation containing beta-amyloid, alpha-synuclein, hyperphosphorylated tau in cultured cells of hippocampus, substantia nigra, locus coeruleus after rotenone exposure. BMC Neurosci 2010 ; 11 : 144. [CrossRef] [PubMed] [Google Scholar]
  11. Hoglinger GU, Feger J, Prigent A, et al. Chronic systemic complex I inhibition induces a hypokinetic multisystem degeneration in rats. J Neurochem 2003 ; 84 : 491–502. [CrossRef] [PubMed] [Google Scholar]
  12. McCormack AL, Di Monte DA. Effects of L-dopa and other amino acids against paraquat-induced nigrostriatal degeneration. J Neurochem 2003 ; 85 : 82–86. [CrossRef] [PubMed] [Google Scholar]
  13. Purisai MG, McCormack AL, Cumine S, et al. Microglial activation as a priming event leading to paraquat-induced dopaminergic cell degeneration. Neurobiol Dis 2007 ; 25 : 392–400. [CrossRef] [PubMed] [Google Scholar]
  14. Peng J, Stevenson FF, Oo ML, Andersen JK. Iron-enhanced paraquat-mediated dopaminergic cell death due to increased oxidative stress as a consequence of microglial activation. Free Radic Biol Med 2009 ; 46 : 312–320. [CrossRef] [PubMed] [Google Scholar]
  15. Smeyne RJ, Jackson-Lewis V. The MPTP model of Parkinson’s disease. Brain Res Mol Brain Res 2005 ; 134 : 57–66. [CrossRef] [PubMed] [Google Scholar]
  16. Richardson JR, Quan Y, Sherer TB, et al. Paraquat neurotoxicity is distinct from that of MPTP and rotenone. Toxicol Sci 2005 ; 88 : 193–201. [CrossRef] [PubMed] [Google Scholar]
  17. Ramachandiran S, Hansen JM, Jones DP, et al. Divergent mechanisms of paraquat, MPP+, and rotenone toxicity: oxidation of thioredoxin and caspase-3 activation. Toxicol Sci 2007 ; 95 : 163–171. [CrossRef] [PubMed] [Google Scholar]
  18. Castello PR, Drechsel DA, Patel M. Mitochondria are a major source of paraquat-induced reactive oxygen species production in the brain. J Biol Chem 2007 ; 282 : 14186–14193. [CrossRef] [PubMed] [Google Scholar]
  19. Drechsel DA, Patel M. Differential contribution of the mitochondrial respiratory chain complexes to reactive oxygen species production by redox cycling agents implicated in parkinsonism. Toxicol Sci 2009 ; 112 : 427–434. [CrossRef] [PubMed] [Google Scholar]
  20. Zhang Y, Dawson VL, Dawson TM. Oxidative stress and genetics in the pathogenesis of Parkinson’s disease. Neurobiol Dis 2000 ; 7 : 240–250. [CrossRef] [PubMed] [Google Scholar]
  21. Sherer TB, Richardson JR, Testa CM, et al. Mechanism of toxicity of pesticides acting at complex I: relevance to environmental etiologies of Parkinson’s disease. J Neurochem 2007 ; 100 : 1469–1479. [PubMed] [Google Scholar]
  22. Choi WS, Palmiter RD, Xia Z. Loss of mitochondrial complex I activity potentiates dopamine neuron death induced by microtubule dysfunction in a Parkinson’s disease model. J Cell Biol 2011 ; 192 : 873–882. [CrossRef] [PubMed] [Google Scholar]
  23. Thomas B, Flint B. Molecular insights into Parkinson’s disease. F1000 Reports Med 2011 ; 3 : 7–15. [CrossRef] [Google Scholar]
  24. Kruger R, Kuhn W, Muller T, et al. Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 1998 ; 18 : 106–108. [CrossRef] [PubMed] [Google Scholar]
  25. Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 1997 ; 276 : 2045–2047. [CrossRef] [PubMed] [Google Scholar]
  26. Zarranz JJ, Alegre J, Gomez-Esteban JC, et al. The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 2004 ; 55 : 164–173. [CrossRef] [PubMed] [Google Scholar]
  27. Diaz-Corrales FJ, Asanuma M, Miyazaki I, et al. Rotenone induces aggregation of gamma-tubulin protein and subsequent disorganization of the centrosome: relevance to formation of inclusion bodies and neurodegeneration. Neuroscience 2005 ; 133 : 117–135. [CrossRef] [PubMed] [Google Scholar]
  28. Casarejos MJ, Menendez J, Solano RM, et al. Susceptibility to rotenone is increased in neurons from parkin null mice and is reduced by minocycline. J Neurochem 2006 ; 97 : 934–946. [CrossRef] [PubMed] [Google Scholar]
  29. Kwon HJ, Heo JY, Shim JH, et al. DJ-1 mediates paraquat-induced dopaminergic neuronal cell death. Toxicol Lett 2011 ; 202 : 85–92. [CrossRef] [PubMed] [Google Scholar]
  30. Costa LG. Current issues in organophosphate toxicology. Clin Chim Acta 2006 ; 366 : 1–13. [CrossRef] [PubMed] [Google Scholar]
  31. Tsatsakis AM, Zafiropoulos A, Tzatzarakis MN, et al. Relation of PON1 and CYP1A1 genetic polymorphisms to clinical findings in a cross-sectional study of a Greek rural population professionally exposed to pesticides. Toxicol Lett 2009 ; 186 : 66–72. [CrossRef] [PubMed] [Google Scholar]
  32. Zintzaras E, Hadjigeorgiou GM. Association of paraoxonase 1 gene polymorphisms with risk of Parkinson’s disease: a meta-analysis. J Hum Genet 2004 ; 49 : 474–481. [CrossRef] [PubMed] [Google Scholar]
  33. Manthripragada AD, Costello S, Cockburn MG, et al. Paraoxonase 1, agricultural organophosphate exposure, and Parkinson disease. Epidemiology 2010 ; 21 : 87–94. [CrossRef] [PubMed] [Google Scholar]
  34. Draganov DI, Teiber JF, Speelman A, et al. Human paraoxonases (PON1, PON2, and PON3) are lactonases with overlapping and distinct substrate specificities. J Lipid Res 2005 ; 46 : 1239–1247. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.