Free Access
Issue |
Med Sci (Paris)
Volume 28, Number 4, Avril 2012
|
|
---|---|---|
Page(s) | 395 - 402 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2012284017 | |
Published online | 25 April 2012 |
- Liégeois JF, Mercier F, Graulich A, et al. Modulation of small conductance calcium-activated potassium (SK) channels: a new challenge in medicinal chemistry. Curr Med Chem 2003 ; 10 : 625–647. [CrossRef] [PubMed] [Google Scholar]
- Shieh CC, Coghlan M, Sullivan JP, Gopalakrishnan M. Potassium channels: molecular defects, diseases, and therapeutic opportunities. Pharmacol Rev 2000 ; 52 : 557–594. [PubMed] [Google Scholar]
- Burg ED, Remillard CV, Yuan JX. K+ channels in apoptosis. J Membr Biol 2006 ; 209 : 3–20. [CrossRef] [PubMed] [Google Scholar]
- Potier M, Joulin V, Roger S, et al. Identification of SK3 channel as a new mediator of breast cancer cell migration. Mol Cancer Ther 2006 ; 5 : 2946–2953. [CrossRef] [PubMed] [Google Scholar]
- Schwab A, Nechyporuk-Zloy V, Fabian A, Stock C. Cells move when ions and water flow. Pflugers Arch 2007 ; 453 : 421–432. [CrossRef] [PubMed] [Google Scholar]
- Gutman GA, Chandy KG, Adelman JP, et al. International union of pharmacology. XLI. Compendium of voltage-gated ion channels: potassium channels. Pharmacol Rev 2003 ; 55 : 583–586. [CrossRef] [PubMed] [Google Scholar]
- Moulton G, Attwood TK, Parry-Smith DJ, Packer JC. Phylogenomic analysis and evolution of the potassium channel gene family. Receptor Channel 2003 ; 9 : 363–377. [Google Scholar]
- Choe S. Potassium channel structures. Nat Rev Neurosci 2002 ; 3 : 115–121. [CrossRef] [PubMed] [Google Scholar]
- Bayliss DA, Barrett PQ. Emerging roles for two-pore-domain potassium channels and their potential therapeutic impact. Trends Pharmacol Sci 2008 ; 29 : 566–575. [CrossRef] [PubMed] [Google Scholar]
- Lotshaw DP. Biophysical, pharmacological, and functional characteristics of cloned and native mammalian two-pore domain K+ channels. Cell Biochem Biophys 2007 ; 47 : 209–256. [CrossRef] [PubMed] [Google Scholar]
- Doyle DA, Morais Cabral J, Pfuetzner RA, et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 1998 ; 280 : 69–77. [CrossRef] [PubMed] [Google Scholar]
- Heginbotham L, Lu Z, Abramson T, MacKinnon R. Mutations in the K+ channel signature sequence. Biophys J 1994 ; 66 : 1061–1067. [CrossRef] [PubMed] [Google Scholar]
- Roux B, MacKinnon R. The cavity and pore helices in the KcsA K+ channel: electrostatic stabilization of monovalent cations. Science 1999 ; 285 : 100–102. [CrossRef] [PubMed] [Google Scholar]
- Zhou Y, Morais-Cabral JH, Kaufman A, MacKinnon R. Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 A resolution. Nature 2001 ; 414 : 43–48. [CrossRef] [PubMed] [Google Scholar]
- Morais-Cabral JH, Zhou Y, MacKinnon R. Energetic optimization of ion conduction rate by the K+ selectivity filter. Nature 2001 ; 414 : 37–42. [CrossRef] [PubMed] [Google Scholar]
- Parent L, Sauvé R, Bernèche S, Roux B. À bas les barrières… d’énergie dans les canaux potassiques! Med Sci (Paris) 2002 ; 18 : 605–609. [CrossRef] [EDP Sciences] [Google Scholar]
- Dilly S, Lamy C, Marrion NV, et al. Ion-channel modulators: more diversity than previously thought. Chembiochem 2011 ; 12 : 1808–1812. [CrossRef] [PubMed] [Google Scholar]
- Swartz KJ, MacKinnon R. Hanatoxin modifies the gating of a voltage-dependent K+ channel through multiple binding sites. Neuron 1997 ; 18 : 665–673. [CrossRef] [PubMed] [Google Scholar]
- Kavanaugh MP, Varnum MD, Osborne PB, et al. Interaction between tetraethylammonium and amino acid residues in the pore of cloned voltage-dependent potassium channels. J Biol Chem 1991 ; 266 : 7583–7587. [PubMed] [Google Scholar]
- Miller C. Competition for block of a Ca2+-activated K+ channel by charybdotoxin and tetraethylammonium. Neuron 1988 ; 1 : 1003–1006. [CrossRef] [PubMed] [Google Scholar]
- Lamy C, Goodchild SJ, Weatherall KL, et al. Allosteric block of KCa2 channels by apamin. J Biol Chem 2010 ; 285 : 27067–27077. [CrossRef] [PubMed] [Google Scholar]
- Stocker M, Pedarzani P. Differential distribution of three Ca2+-activated K+ channel subunits, SK1, SK2, and SK3, in the adult rat central nervous system. Mol Cell Neurosci 2000 ; 15 : 476–493. [CrossRef] [PubMed] [Google Scholar]
- Rouchet N, Waroux O, Lamy C, et al. SK channel blockade promotes burst firing in dorsal raphe serotonergic neurons. Eur J Neurosci 2008 ; 28 : 1108–1115. [CrossRef] [PubMed] [Google Scholar]
- Waroux O, Massotte L, Alleva L, et al. SK channels control the firing pattern of midbrain dopaminergic neurons in vivo. Eur J Neurosci 2005 ; 22 : 3111–3121. [CrossRef] [PubMed] [Google Scholar]
- Diness JG, Sorensen US, Nissen JD, et al. Inhibition of small-conductance Ca2+-activated K+ channels terminates and protects against atrial fibrillation. Circ Arrhythm Electrophysiol 2010 ; 3 : 380–390. [CrossRef] [PubMed] [Google Scholar]
- Grube S, Gerchen MF, Adamcio B, et al. A CAG repeat polymorphism of KCNN3 predicts SK3 channel function and cognitive performance in schizophrenia. EMBO Mol Med 2011 ; 3 : 309–319. [CrossRef] [PubMed] [Google Scholar]
- Shakkottai VG, Regaya I, Wulff H, et al. Design and characterization of a highly selective peptide inhibitor of the small conductance calcium-activated K+ channel, SkCa2. J Biol Chem 2001 ; 276 : 43145–43151. [CrossRef] [PubMed] [Google Scholar]
- Hugues M, Romey G, Duval D, et al. Apamin as a selective blocker of the calcium-dependent potassium channel in neuroblastoma cells: voltage-clamp and biochemical characterization of the toxin receptor. Proc Natl Acad Sci USA 1982 ; 79 : 1308–1312. [CrossRef] [Google Scholar]
- Grunnet M, Jensen BS, Olesen SP, Klaerke DA. Apamin interacts with all subtypes of cloned small-conductance Ca2+-activated K+ channels. Pflugers Arch 2001 ; 441 : 544–550. [CrossRef] [PubMed] [Google Scholar]
- Pedarzani P, Stocker M. Molecular and cellular basis of small- and intermediate-conductance, calcium-activated potassium channel function in the brain. Cell Mol Life Sci 2008 ; 65 : 3196–3217. [CrossRef] [PubMed] [Google Scholar]
- Weatherall KL, Seutin V, Liegeois JF, Marrion NV. Crucial role of a shared extracellular loop in apamin sensitivity and maintenance of pore shape of small-conductance calcium-activated potassium (SK) channels. Proc Natl Acad Sci USA 2011 ; 108 : 18494–18499. [CrossRef] [Google Scholar]
- Campos Rosa J, Galanakis D, Piergentili A, et al. Synthesis, molecular modeling, and pharmacological testing of bis-quinolinium cyclophanes: potent, non-peptidic blockers of the apamin-sensitive Ca2+-activated K+ channel. J Med Chem 2000 ; 43 : 420–431. [CrossRef] [PubMed] [Google Scholar]
- Chen JQ, Galanakis D, Ganellin CR, et al. bis-Quinolinium cyclophanes: 8,14-diaza-1,7(1,4)-diquinolinacyclotetradecaphane (UCL 1848), a highly potent and selective, nonpeptidic blocker of the apamin-sensitive Ca2+-activated K+ channel. J Med Chem 2000 ; 43 : 3478–3481. [CrossRef] [PubMed] [Google Scholar]
- Olesen SP, Munch E, Moldt P, Drejer J. Selective activation of Ca2+-dependent K+ channels by novel benzimidazolone. Eur J Pharmacol 1994 ; 251 : 53–59. [CrossRef] [PubMed] [Google Scholar]
- Girault A, Haelters JP, Potier M, et al. New alkyl-lipid blockers of SK3 channels reduce cancer-cell migration and occurrence of metastasis. Curr Cancer Drug Targets 2011 ; 11 : 1111–1125. [CrossRef] [PubMed] [Google Scholar]
- Strobaek D, Hougaard C, Johansen TH, et al. Inhibitory gating modulation of small conductance Ca2+-activated K+ channels by the synthetic compound (R)-N-(benzimidazol-2-yl)-1,2,3,4-tetrahydro-1-naphtylamine (NS8593) reduces afterhyperpolarizing current in hippocampal CA1 neurons. Mol Pharmacol 2006 ; 70 : 1771–1782. [CrossRef] [PubMed] [Google Scholar]
- Pedarzani P, Mosbacher J, Rivard A, et al. Control of electrical activity in central neurons by modulating the gating of small conductance Ca2+-activated K+ channels. J Biol Chem 2001 ; 276 : 9762–9769. [CrossRef] [PubMed] [Google Scholar]
- Jenkins DP, Strobaek D, Hougaard C, et al. Negative gating modulation by (R)-N-(benzimidazol-2-yl)-1,2,3,4-tetrahydro-1-naphthylamine (NS8593) depends on residues in the inner pore vestibule: pharmacological evidence of deep-pore gating of K(Ca)2 channels. Mol Pharmacol 2011 ; 79 : 899–909. [CrossRef] [PubMed] [Google Scholar]
- Potier M, Chantome A, Joulin V, et al. The SK3/K(Ca)2.3 potassium channel is a new cellular target for edelfosine. Br J Pharmacol 2011 ; 162 : 464–479. [CrossRef] [PubMed] [Google Scholar]
- Seutin V, Scuvée-Moreau J, Dresse A. Evidence for a non-GABAergic action of quaternary salts of bicuculline on dopaminergic neurones. Neuropharmacology 1997 ; 36 : 1653–1657. [CrossRef] [PubMed] [Google Scholar]
- Scuvée-Moreau J, Boland A, Graulich A, et al. Electrophysiological characterization of the SK channel blockers methyl-laudanosine and methyl-noscapine in cell lines and rat brain slices. Br J Pharmacol 2004 ; 143 : 753–764. [CrossRef] [PubMed] [Google Scholar]
- Scuvée-Moreau J, Liégeois JF, Massotte L, Seutin V. Methyl-laudanosine: a new pharmacological tool to investigate the function of small-conductance Ca2+-activated K+ channels. J Pharmacol Exp Ther 2002 ; 302 : 1176–1183. [CrossRef] [PubMed] [Google Scholar]
- Graulich A, Dilly S, Farce A, et al. Synthesis and radioligand binding studies of bis-isoquinolinium derivatives as small conductance Ca2+-activated K+ channel blockers. J Med Chem 2007 ; 50 : 5070–5075. [CrossRef] [PubMed] [Google Scholar]
- Dilly S, Graulich A, Farce A, et al. Identification of a pharmacophore of SKCa channel blockers. J Enzyme Inhib Med Chem 2005 ; 20 : 517–523. [CrossRef] [PubMed] [Google Scholar]
- Martina M, Turcotte ME, Halman S, Bergeron R. The sigma-1 receptor modulates NMDA receptor synaptic transmission and plasticity via SK channels in rat hippocampus. J Physiol 2007 ; 578 : 143–157. [CrossRef] [PubMed] [Google Scholar]
- Lamy C, Scuvée-Moreau J, Dilly S, et al. The sigma agonist 1,3-di-o-tolyl-guanidine directly blocks SK channels in dopaminergic neurons and in cell lines. Eur J Pharmacol 2010 ; 641 : 23–28. [CrossRef] [PubMed] [Google Scholar]
- Graulich A, Lamy C, Alleva L, et al. Bis-tetrahydroisoquinoline derivatives: AG525E1, a new step in the search for non-quaternary non-peptidic small conductance Ca2+-activated K+ channel blockers. Bioorg Med Chem Lett 2008 ; 18 : 3440–3445. [CrossRef] [PubMed] [Google Scholar]
- Neny M, Lemmer Y, Graulich A, et al. The SK channel blocker AG525E1 increases locomotor activity and in vivo dopamine release in the rat nucleus accumbens. In : Phillips PEM SS, Ahn S, Phillips AG, eds. Proceedings of the 12th International conference on in vivo methods monitoring molecules in neuroscience. Vancouver : University of Bristish Columbia, 2008 : 267–270. [Google Scholar]
- Dilly S, Lamy C, Liégeois JF, Seutin V. Combined experimental and computational approaches to study the action of blockers of small conductance calcium-activated potassium (SK) channels. Acta Physiol Scand 2010 ; suppl 678 : 0–10. [Google Scholar]
- Nolting A, Ferraro T, D’Hoedt D, Stocker M. An amino acid outside the pore region influences apamin sensitivity in small conductance Ca2+-activated K+ channels. J Biol Chem 2007 ; 282 : 3478–3486. [CrossRef] [PubMed] [Google Scholar]
- Goodchild SJ, Lamy C, Seutin V, Marrion NV. Inhibition of K(Ca)2.2 and K(Ca)2.3 channel currents by protonation of outer pore histidine residues. J Gen Physiol 2009 ; 134 : 295–308. [CrossRef] [PubMed] [Google Scholar]
- Seutin V. Régulation de l’activité des neurones monoaminergiques par des canaux ioniques : une opportunité pour de nouvelles approches thérapeutiques ? Bull Mem Acad R Med Belg 2008 ; 163 : 213–223. [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.