Free Access
Med Sci (Paris)
Volume 28, Number 4, Avril 2012
Page(s) 388 - 394
Section M/S Revues
Published online 25 April 2012
  1. Global measles mortality, 2000–2008. Morb Mortal Wkly Rep 2009 ; 58 : 1321–1326. [Google Scholar]
  2. Enders JF, Peebles TC. Propagation in tissue cultures of cytopathogenic agents from patients with measles. Proc Soc Exp Biol Med 1954 ; 86 : 277–286. [PubMed] [Google Scholar]
  3. Muhlebach MD, Mateo M, Sinn PL, et al. Adherens junction protein nectin-4 is the epithelial receptor for measles virus. Nature 2011 ; 480 : 530–533. [PubMed] [Google Scholar]
  4. Noyce RS, Bondre DG, Ha MN, et al. Tumor cell marker PVRL4 (nectin 4) is an epithelial cell receptor for measles virus. PLoS Pathog 2011 ; 7 : e1002240. [Google Scholar]
  5. Bluming AZ, Ziegler JL. Regression of Burkitt’s lymphoma in association with measles infection. Lancet 1971 ; 2 : 105–106. [CrossRef] [PubMed] [Google Scholar]
  6. Mota HC., Infantile Hodgkin’s disease: remission after measles. Br Med J 1973 ; 2 : 421. [CrossRef] [PubMed] [Google Scholar]
  7. Taqi AM, Abdurrahman MB, Yakubu AM, Fleming AF., Regression of Hodgkin’s disease after measles. Lancet 1981 ; 1 : 1112. [CrossRef] [Google Scholar]
  8. Zygiert Z., Hodgkin’s disease: remissions after measles.Lancet 1971 ; 1 : 593. [CrossRef] [PubMed] [Google Scholar]
  9. Heinzerling L, Kunzi V, Oberholzer PA, et al. Oncolytic measles virus in cutaneous T-cell lymphomas mounts antitumor immune responses in vivo and targets interferon-resistant tumor cells. Blood 2005 ; 106 : 2287–2294. [CrossRef] [PubMed] [Google Scholar]
  10. Galanis E, Hartmann LC, Cliby WA, et al. Phase I Trial of intraperitoneal administration of an oncolytic measles virus strain engineered to express carcinoembryonic antigen for recurrent ovarian cancer. Cancer Res 2010 ; 70 : 875–882. [CrossRef] [PubMed] [Google Scholar]
  11. Dhiman N, Jacobson RM, Poland GA. Measles virus receptors: SLAM and CD46. Rev Med Virol 2004 ; 14 : 217–229. [CrossRef] [PubMed] [Google Scholar]
  12. Dorig RE, Marcil A, Chopra A, Richardson CD. The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell 1993 ; 75 : 295–305. [CrossRef] [PubMed] [Google Scholar]
  13. Anderson BD, Nakamura T, Russell SJ, Peng KW. High CD46 receptor density determines preferential killing of tumor cells by oncolytic measles virus. Cancer Res 2004 ; 64 : 4919–4926. [CrossRef] [PubMed] [Google Scholar]
  14. Bossow S, Grossardt C, Temme A, et al. Armed and targeted measles virus for chemovirotherapy of pancreatic cancer. Cancer Gene Ther 2011 ; 18 : 598–608. [CrossRef] [PubMed] [Google Scholar]
  15. Ungerechts G, Springfeld C, Frenzke ME, et al. An immunocompetent murine model for oncolysis with an armed and targeted measles virus. Mol Ther 2007 ; 15 : 1991–1997. [CrossRef] [PubMed] [Google Scholar]
  16. Ungerechts G, Springfeld C, Frenzke ME, et al. Lymphoma chemovirotherapy: CD20-targeted and convertase-armed measles virus can synergize with fludarabine. Cancer Res 2007 ; 67 : 10939–10947. [CrossRef] [PubMed] [Google Scholar]
  17. Allen C, Vongpunsawad S, Nakamura T, et al. Retargeted oncolytic measles strains entering via the EGFRvIII receptor maintain significant antitumor activity against gliomas with increased tumor specificity. Cancer Res 2006 ; 66 : 11840–11850. [CrossRef] [PubMed] [Google Scholar]
  18. Allen C, Paraskevakou G, Liu C, et al. Oncolytic measles virus strains in the treatment of gliomas. Expert Opin Biol Ther 2008 ; 8 : 213–220. [CrossRef] [PubMed] [Google Scholar]
  19. Liu C, Hasegawa K, Russell SJ, et al. Prostate-specific membrane antigen retargeted measles virotherapy for the treatment of prostate cancer. Prostate 2009 ; 69 : 1128–1141. [CrossRef] [PubMed] [Google Scholar]
  20. Springfeld C, von Messling V, Frenzke M, et al. Oncolytic efficacy and enhanced safety of measles virus activated by tumor-secreted matrix metalloproteinases. Cancer Res 2006 ; 66 : 7694–7700. [CrossRef] [PubMed] [Google Scholar]
  21. Leber MF, Bossow S, Leonard VH, et al. MicroRNA-sensitive oncolytic measles viruses for cancer-specific vector tropism. Mol Ther 2011 ; 19 : 1097–1106. [Google Scholar]
  22. Morfin F, Beguin A, Lina B, Thouvenot D. Detection of measles vaccine in the throat of a vaccinated child. Vaccine 2002 ; 20 : 1541–1543. [CrossRef] [PubMed] [Google Scholar]
  23. Leonard VH, Sinn PL, Hodge G, et al. Measles virus blind to its epithelial cell receptor remains virulent in rhesus monkeys but cannot cross the airway epithelium and is not shed. J Clin Invest 2008 ; 118 : 2448–2458. [PubMed] [Google Scholar]
  24. Iankov ID, Blechacz B, Liu C, et al. Infected cell carriers: a new strategy for systemic delivery of oncolytic measles viruses in cancer virotherapy. Mol Ther 2007 ; 15 : 114–122. [CrossRef] [PubMed] [Google Scholar]
  25. Mader EK, Maeyama Y, Lin Y, et al. Mesenchymal stem cell carriers protect oncolytic measles viruses from antibody neutralization in an orthotopic ovarian cancer therapy model. Clin Cancer Res 2009 ; 15 : 7246–7255. [CrossRef] [PubMed] [Google Scholar]
  26. Liu C, Russell SJ, Peng KW. Systemic therapy of disseminated myeloma in passively immunized mice using measles virus-infected cell carriers. Mol Ther 2010 ; 18 : 1155–1164. [CrossRef] [PubMed] [Google Scholar]
  27. Lamfers ML, Fulci G, Gianni D, et al. Cyclophosphamide increases transgene expression mediated by an oncolytic adenovirus in glioma-bearing mice monitored by bioluminescence imaging. Mol Ther 2006 ; 14 : 779–788. [CrossRef] [PubMed] [Google Scholar]
  28. Myers RM, Greiner SM, Harvey ME, et al. Preclinical pharmacology and toxicology of intravenous MV-NIS, an oncolytic measles virus administered with or without cyclophosphamide. Clin Pharmacol Ther 2007 ; 82 : 700–710. [CrossRef] [PubMed] [Google Scholar]
  29. Bitnun A, Shannon P, Durward A, et al. Measles inclusion-body encephalitis caused by the vaccine strain of measles virus. Clin Infect Dis 1999 ; 29 : 855–861. [CrossRef] [PubMed] [Google Scholar]
  30. Miest TS, Yaiw KC, Frenzke M, et al. Envelope-chimeric entry-targeted measles virus escapes neutralization and achieves oncolysis. Mol Ther 2011 ; 19 : 1813–1820. [CrossRef] [PubMed] [Google Scholar]
  31. Senzer NN, Kaufman HL, Amatruda T, et al. Phase II clinical trial of a granulocyte-macrophage colony-stimulating factor-encoding, second-generation oncolytic herpesvirus in patients with unresectable metastatic melanoma. J Clin Oncol 2009 ; 27 : 5763–5771. [CrossRef] [PubMed] [Google Scholar]
  32. Park BH, Hwang T, Liu TC, et al. Use of a targeted oncolytic poxvirus, JX-594, in patients with refractory primary or metastatic liver cancer: a phase I trial. Lancet Oncol 2008 ; 9 : 533–542. [CrossRef] [PubMed] [Google Scholar]
  33. Ottolino-Perry K, Diallo JS, Lichty BD, et al. Intelligent design: combination therapy with oncolytic viruses. Mol Ther 2010 ; 18 : 251–263. [CrossRef] [PubMed] [Google Scholar]
  34. Ungerechts G, Frenzke ME, Yaiw KC, et al. Mantle cell lymphoma salvage regimen: synergy between a reprogrammed oncolytic virus and two chemotherapeutics. Gene Ther 2010 ; 17 : 1506–1516. [CrossRef] [PubMed] [Google Scholar]
  35. Touchefeu Y, Vassaux G, Harrington KJ. Oncolytic viruses in radiation oncology. Radiother Oncol 2011 ; 99 : 262–270. [CrossRef] [PubMed] [Google Scholar]
  36. Liu C, Sarkaria JN, Petell CA, et al. Combination of measles virus virotherapy and radiation therapy has synergistic activity in the treatment of glioblastoma multiforme. Clin Cancer Res 2007 ; 13 : 7155–7165. [CrossRef] [PubMed] [Google Scholar]
  37. Dingli D, Peng KW, Harvey ME, et al. Image-guided radiovirotherapy for multiple myeloma using a recombinant measles virus expressing the thyroidal sodium iodide symporter. Blood 2004 ; 103 : 1641–1646. [CrossRef] [PubMed] [Google Scholar]
  38. Msaouel P, Iankov ID, Allen C, et al. Noninvasive imaging and radiovirotherapy of prostate cancer using an oncolytic measles virus expressing the sodium iodide symporter. Mol Ther 2009 ; 17 : 2041–2048. [CrossRef] [PubMed] [Google Scholar]
  39. Penheiter AR, Wegman TR, Classic KL, et al. Sodium iodide symporter (NIS)-mediated radiovirotherapy for pancreatic cancer. Am J Roentgenol 2010 ; 195 : 341–349. [CrossRef] [Google Scholar]
  40. Mateo M, Lopez M. Nectine-4, une protéine clé pour la transmission du virus de la rougeole. Med Sci (Paris) 2012 ; 28 : 363–365. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  41. Lemay G. Apprivoiser nos ennemis pour en faire des alliés : la virothérapie anticancéreuse. Med Sci (Paris) 2012 ; 28 : 339–340. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.