Free Access
Med Sci (Paris)
Volume 28, Number 4, Avril 2012
Page(s) 403 - 408
Section M/S Revues
Published online 25 April 2012
  1. Vivier E, Tomasello E, Baratin, et al. Functions of natural killer cells. Nat Immunol 2008 ; 9 : 503–510. [CrossRef] [PubMed] [Google Scholar]
  2. Diefenbach A, Raulet DH. Strategies for target cell recognition by natural killer cells. Immunol Rev 2001 ; 181 : 170–184. [CrossRef] [PubMed] [Google Scholar]
  3. Di Santo JP. Functionally distinct NK-cell subsets: developmental origins and biological implications. Eur J Immunol 2008 ; 38 : 2948–2951. [CrossRef] [PubMed] [Google Scholar]
  4. Walzer T, Vivier E. G-protein-coupled receptors in control of natural killer cell migration. Trends Immunol 2011 ; 32 : 486–492. [CrossRef] [PubMed] [Google Scholar]
  5. Trinchieri G. Biology of natural killer cells. Adv Immunol 1989 ; 47 : 187–376. [CrossRef] [PubMed] [Google Scholar]
  6. Carotta S, Pang SHM, Nutt SL, Belz GT. Identification of the earliest NK-cell precursor in the mouse BM. Blood 2011 ; 117 : 5449–5452. [CrossRef] [PubMed] [Google Scholar]
  7. Kim S, Iizuka K, Kang HSP, et al. In vivo developmental stages in murine natural killer cell maturation. Nat Immunol 2002 ; 3 : 523–528. [CrossRef] [PubMed] [Google Scholar]
  8. Hayakawa Y, Smyth MJ. CD27 dissects mature NK cells into two subsets with distinct responsiveness and migratory capacity. J Immunol 2006 ; 176 : 1517–1524. [PubMed] [Google Scholar]
  9. Chiossone L, Chaix J, Fuseri N, et al. Maturation of mouse NK cells is a 4-stage developmental program. Blood 2009 ; 113 : 5488–5496. [CrossRef] [PubMed] [Google Scholar]
  10. Fang M, Roscoe F, Sigal LJ. Age-dependent susceptibility to a viral disease due to decreased natural killer cell numbers and trafficking. J Exp Med 2010 ; 207 : 2369–2381. [CrossRef] [PubMed] [Google Scholar]
  11. Walzer T, Chiossone L, Chaix J, et al. Natural killer cell trafficking in vivo requires a dedicated sphingosine 1-phosphate receptor. Nat Immunol 2007 ; 8 : 1337–1344. [CrossRef] [PubMed] [Google Scholar]
  12. Mayol K, Biajoux V, Marvel J, et al. Sequential desensitization of CXCR4 and S1P5 controls natural killer cell trafficking. Blood 2011 ; 118 : 4863–4871. [CrossRef] [PubMed] [Google Scholar]
  13. Thomas SY, Scanlon ST, Griewank KG, et al. PLZF induces an intravascular surveillance program mediated by long-lived LFA-1-ICAM-1 interactions. J Exp Med 2011 ; 208 : 1179–1188. [CrossRef] [PubMed] [Google Scholar]
  14. Lodolce JP, Boone DL, Chai S, et al. IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity 1998 ; 9 : 669–676. [CrossRef] [PubMed] [Google Scholar]
  15. Rubinstein MP, Kovar M, Purton JF, et al. Converting IL-15 to a superagonist by binding to soluble IL-15R(alpha). Proc Natl Acad Sci USA 2006 ; 103 : 9166–9171. [CrossRef] [Google Scholar]
  16. Burkett PR, Koka R, Chien M, et al. Coordinate expression and trans presentation of interleukin (IL)-15Ralpha and IL-15 supports natural killer cell and memory CD8+ T cell homeostasis. J Exp Med 2004 ; 200 : 825–834. [CrossRef] [PubMed] [Google Scholar]
  17. Nguyen KB, Salazar-Mather TP, Dalod MY, et al. Coordinated and distinct roles for IFN-alpha beta, IL-12, and IL-15 regulation of NK cell responses to viral infection. J Immunol 2002 ; 169 : 4279–4287. [PubMed] [Google Scholar]
  18. Sun JC, Ma A, Lanier LL. Cutting edge: IL-15-independent NK cell response to mouse cytomegalovirus infection. J Immunol 2009 ; 183 : 2911–2914. [CrossRef] [PubMed] [Google Scholar]
  19. Guimond M, Freud AG, Mao HC, et al. In vivo role of Flt3 ligand and dendritic cells in NK cell homeostasis. J Immunol 2010 ; 184 : 2769–2775. [CrossRef] [PubMed] [Google Scholar]
  20. Hochweller K, Striegler J, Hämmerling GJ, Garbi N. A novel CD11c.DTR transgenic mouse for depletion of dendritic cells reveals their requirement for homeostatic proliferation of natural killer cells. Eur J Immunol 2008 ; 38 : 2776–2783. [CrossRef] [PubMed] [Google Scholar]
  21. Soderquest K, Powell N, Luci C, et al. Monocytes control natural killer cell differentiation to effector phenotypes. Blood 2011 ; 117 : 4511–4518. [CrossRef] [PubMed] [Google Scholar]
  22. Cooper MA, Bush JE, Fehniger, et al. In vivo evidence for a dependence on interleukin 15 for survival of natural killer cells. Blood 2002 ; 100 : 3633–3638. [CrossRef] [PubMed] [Google Scholar]
  23. Huntington ND, Puthalakath H, Gunn P, et al. Interleukin 15-mediated survival of natural killer cells is determined by interactions among Bim, Noxa and Mcl-1. Nat Immunol 2007 ; 8 : 856–863. [CrossRef] [PubMed] [Google Scholar]
  24. Jamieson AM, Isnard P, Dorfman JR, et al. Turnover and proliferation of NK cells in steady state and lymphopenic conditions. J Immunol 2004 ; 172 : 864–870. [PubMed] [Google Scholar]
  25. Robbins SH, Tessmer MS, Mikayama T, Brossay L. Expansion and contraction of the NK cell compartment in response to murine cytomegalovirus infection. J Immunol 2004 ; 173 : 259–266. [PubMed] [Google Scholar]
  26. Prlic M, Blazar BR, Farrar MA, Jameson SC. In vivo survival and homeostatic proliferation of natural killer cells. J Exp Med 2003 ; 197 : 967–976. [CrossRef] [PubMed] [Google Scholar]
  27. Sun JC, Beilke JN, Bezman NA, Lanier LL. Homeostatic proliferation generates long-lived natural killer cells that respond against viral infection. J Exp Med 2011 ; 208 : 357–368. [CrossRef] [PubMed] [Google Scholar]
  28. Arase H, Mocarski ES, Campbell AE, et al. Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science 2002 ; 296 : 1323–1326. [CrossRef] [PubMed] [Google Scholar]
  29. Dokun AO, Kim S, Smith HR, et al. Specific and nonspecific NK cell activation during virus infection. Nat Immunol 2001 ; 2 : 951–956. [CrossRef] [PubMed] [Google Scholar]
  30. Sun JC, Beilke JN, Lanier LL. Adaptive immune features of natural killer cells. Nature 2009 ; 457 : 557–561. [CrossRef] [PubMed] [Google Scholar]
  31. Lopez-Vergès S, Milush JM, Schwartz BS, et al. Expansion of a unique CD57+NKG2Chi natural killer cell subset during acute human cytomegalovirus infection. Proc Natl Acad Sci USA 2011 ; 108 : 14725–14732. [CrossRef] [Google Scholar]
  32. Björkström NK, Lindgren T, Stoltz M, et al. Rapid expansion and long-term persistence of elevated NK cell numbers in humans infected with hantavirus. J Exp Med 2011 ; 208 : 13–21. [CrossRef] [PubMed] [Google Scholar]
  33. O’Leary JG., Goodarzi M, Drayton DL, von Andrian UH. T cell- and B cell-independent adaptive immunity mediated by natural killer cells. Nat Immunol 2006 ; 7 : 507–516. [CrossRef] [PubMed] [Google Scholar]
  34. Paust S, Gill HS, Wang BZ, et al. Critical role for the chemokine receptor CXCR6 in NK cell-mediated antigen-specific memory of haptens and viruses. Nat Immunol 2010 ; 11 : 1127–1135. [CrossRef] [PubMed] [Google Scholar]
  35. Rouzaire P, Luci C, Blasco E, et al. Natural killer cells and T cells induce different types of skin reactions during recall responses to haptens. Eur J Immunol 2012 ; 42 : 80–88. [CrossRef] [PubMed] [Google Scholar]
  36. Schlub TE, Sun JC, Walton SM, et al. Comparing the kinetics of NK cells, CD4, and CD8 T cells in murine cytomegalovirus infection. J Immunol 2011 ; 187 : 1385–1392. [CrossRef] [PubMed] [Google Scholar]
  37. Busche A, Schmitz S, Fleige H, et al. Genetic labeling reveals altered turnover and stability of innate lymphocytes in latent mouse cytomegalovirus infection. J Immunol 2011 ; 186 : 2918–2925. [CrossRef] [PubMed] [Google Scholar]
  38. Bercovici N, Caignard A. Rencontre avec un pathogène : les cellules natural killer se souviennent-elles ? Med Sci (Paris) 2009 ; 25 : 559–562. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.