Free Access
Med Sci (Paris)
Volume 28, Number 4, Avril 2012
Page(s) 409 - 415
Section M/S Revues
Published online 25 April 2012
  1. Rubinfeld H, Seger R. The ERK cascade: a prototype of MAPK signaling. Mol Biotechnol 2005 ; 31 : 151–174. [CrossRef] [PubMed] [Google Scholar]
  2. Wortzel I, Seger R. The ERK cascade: distinct functions within various subcellular organelles. Genes Cancer 2011 ; 2 : 195–209. [CrossRef] [PubMed] [Google Scholar]
  3. Fischer A, Katayama C, Pages G, et al. The role of erk1 and erk2 in multiple stages of T cell development. Immunity 2005 ; 23 : 431–443. [CrossRef] [PubMed] [Google Scholar]
  4. Ussar S, Voss T. MEK1 and MEK2, different regulators of the G1/S transition. J Biol Chem 2004 ; 279 : 43861–43869. [CrossRef] [PubMed] [Google Scholar]
  5. Orton RJ, Sturm OE, Vyshemirsky V, et al. Computational modelling of the receptor-tyrosine-kinase-activated MAPK pathway. Biochem J 2005 ; 392 : 249–261. [CrossRef] [PubMed] [Google Scholar]
  6. Shaul YD, Seger R. The MEK/ERK cascade: from signaling specificity to diverse functions. Biochim Biophys Acta 2007 ; 1773 : 1213–1226. [CrossRef] [PubMed] [Google Scholar]
  7. Rossant J, Cross J. Placental development: lessons from mouse mutants. Nat Rev Genet 2001 ; 2 : 538–548. [CrossRef] [PubMed] [Google Scholar]
  8. Dackor J, Strunk KE, Wehmeyer MM, Threadgill DW. Altered trophoblast proliferation is insufficient to account for placental dysfunction in Egfr null embryos. Placenta 2007 ; 28 : 1211–1218. [CrossRef] [PubMed] [Google Scholar]
  9. Hatano N, Mori Y, Oh-Hora M, et al. Essential role for ERK2 mitogen-activated protein kinase in placental development. Genes Cells 2003 ; 8 : 847–856. [CrossRef] [PubMed] [Google Scholar]
  10. Goldin SN, Papaioannou VE. Paracrine action of FGF4 during periimplantation development maintains trophectoderm and primitive endoderm. Genesis 2003 ; 36 : 40–47. [CrossRef] [PubMed] [Google Scholar]
  11. Schmidt C, Bladt F, Goedecke S, et al. Scatter factor/hepatocyte growth factor is essential for liver development. Nature 1995 ; 373 : 699–702. [CrossRef] [PubMed] [Google Scholar]
  12. Giroux S, Tremblay M, Bernard D, et al. Embryonic death of Mek1-deficient mice reveals a role for this kinase in angiogenesis in the labyrinthine region of the placenta. Curr Biol 1999 ; 9 : 369–372. [CrossRef] [PubMed] [Google Scholar]
  13. Bissonauth V, Roy S, Gravel M, et al. Requirement for Map2k1 (Mek1) in extra-embryonic ectoderm during placentogenesis. Development 2006 ; 133 : 3429–3440. [CrossRef] [PubMed] [Google Scholar]
  14. Catalanotti F, Reyes G, Jesenberger V, et al. A Mek1-Mek2 heterodimer determines the strength and duration of the Erk signal. Nat Struct Mol Biol 2009 ; 16 : 294–303. [CrossRef] [PubMed] [Google Scholar]
  15. Nadeau V, Guillemette S, Bélanger L-F, et al. Map2k1 and Map2k2 genes contribute to the normal development of syncytiotrophoblasts during placentation. Development 2009 ; 136 : 1363–1374. [CrossRef] [PubMed] [Google Scholar]
  16. Sachs M, Brohmann H, Zechner D, et al. Essential role of Gab1 for signaling by the c-Met receptor in vivo. J Cell Biol 2000 ; 150 : 1375–1384. [CrossRef] [PubMed] [Google Scholar]
  17. Galabova-Kovacs G, Matzen D, Piazzolla D, et al. Essential role of B-Raf in ERK activation during extraembryonic development. Proc Nat Acad Sci USA 2006 ; 103 : 1325–1330. [CrossRef] [Google Scholar]
  18. Huser M, Luckett J, Chiloeches A, et al. MEK kinase activity is not necessary for Raf-1 function. EMBO J 2001 ; 20 : 1940–1951. [CrossRef] [PubMed] [Google Scholar]
  19. Shaw AT, Meissner A, Dowdle JA, et al. Sprouty-2 regulates oncogenic K-ras in lung development and tumorigenesis. Genes Dev 2007 ; 21 : 694–707. [CrossRef] [PubMed] [Google Scholar]
  20. Watson ED, Cross JC. Development of structures and transport functions in the mouse placenta. Physiology (Bethesda) 2005 ; 20 : 180–193. [CrossRef] [PubMed] [Google Scholar]
  21. Cross JC, Nakano H, Natale DRC, et al. Branching morphogenesis during development of placental villi. Differentiation 2006 ; 74 : 393–401. [CrossRef] [PubMed] [Google Scholar]
  22. Cross JC. How to make a placenta: mechanisms of trophoblast cell differentiation in mice: a review. Placenta 2005 ; 26 (suppl A) : S3–S9. [CrossRef] [PubMed] [Google Scholar]
  23. Cross J. Genetic insights into trophoblast differentiation and placental morphogenesis. Semin Cell Dev Biol 2000 ; 11 : 105–113. [CrossRef] [PubMed] [Google Scholar]
  24. Nagai A, Takebe K, Nio-Kobayashi J, et al. Cellular expression of the monocarboxylate transporter (MCT) family in the placenta of mice. Placenta 2010 ; 31 : 126–133. [CrossRef] [PubMed] [Google Scholar]
  25. Simmons DG, Natale DRC, Begay V, et al. Early patterning of the chorion leads to the trilaminar trophoblast cell structure in the placental labyrinth. Development 2008 ; 135 : 2083–2091. [CrossRef] [PubMed] [Google Scholar]
  26. Charron J, Jeannotte L. Le rôle essentiel de MEK1 lors de l’angiogenèse placentaire. Med Sci (Paris) 1999 ; 15 : 1155–1157. [CrossRef] [Google Scholar]
  27. Gee E, Milkiewicz M, Haas TL. p38 MAPK activity is stimulated by vascular endothelial growth factor receptor 2 activation and is essential for shear stress-induced angiogenesis. J Cell Physiol 2010 ; 222 : 120–126. [CrossRef] [PubMed] [Google Scholar]
  28. Bélanger LF, Roy S, Tremblay M, et al. Mek2 is dispensable for mouse growth and development. Mol Cell Biol 2003 ; 23 : 4778–4787. [CrossRef] [PubMed] [Google Scholar]
  29. Fernandez-Serra M, Consales C, Livigni A, Arnone MI. Role of the ERK-mediated signaling pathway in mesenchyme formation and differentiation in the sea urchin embryo. Dev Biol 2004 ; 268 : 384–402. [CrossRef] [PubMed] [Google Scholar]
  30. Qian X, Esteban L, Vass W, et al. The Sos1 and Sos2 Ras-specific exchange factors: differences in placental expression and signaling properties. EMBO J 2000 ; 19 : 642–654. [CrossRef] [PubMed] [Google Scholar]
  31. Parast MM, Yu H, Ciric A, et al. PPARgamma regulates trophoblast proliferation, promotes labyrinthine trilineage differentiation. PLoS One 2009 ; 4 : e8055. [CrossRef] [PubMed] [Google Scholar]
  32. Parekh V, McEwen A, Barbour V, et al. Defective extraembryonic angiogenesis in mice lacking LBP-1a, a member of the grainyhead family of transcription factors. Mol Cell Biol 2004 ; 24 : 7113–7129. [CrossRef] [PubMed] [Google Scholar]
  33. Barak Y, Nelson MC, Ong ES, et al. PPAR gamma is required for placental, cardiac, and adipose tissue development. Mol Cell 1999 ; 4 : 585–595. [CrossRef] [PubMed] [Google Scholar]
  34. Burgermeister E, Chuderland D, Hanoch T, et al. Interaction with MEK causes nuclear export and downregulation of peroxisome proliferator-activated receptor gamma. Mol Cell Biol 2007 ; 27 : 803–817. [CrossRef] [PubMed] [Google Scholar]
  35. Froment P, Gizard F, Staels B, et al. Un rôle pour PPARγ dans la reproduction ? Med Sci (Paris) 2005 ; 21 : 507–511. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  36. Kubota N, Terauchi Y, Miki H, et al. PPAR gamma mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance. Mol Cell 1999 ; 4 : 597–609. [CrossRef] [PubMed] [Google Scholar]
  37. Cross JC, Anson-Cartwright L, Scott IC. Transcription factors underlying the development and endocrine functions of the placenta. Recent Prog Horm Res 2002 ; 57 : 221–234. [CrossRef] [PubMed] [Google Scholar]
  38. Shalom-Barak T, Nicholas JM, Wang Y, et al. Peroxisome proliferator-activated receptor gamma controls Muc1 transcription in trophoblasts. Mol Cell Biol 2004 ; 24 : 10661–10669. [CrossRef] [PubMed] [Google Scholar]
  39. Camp HS, Tafuri SR. Regulation of peroxisome proliferator-activated receptor gamma activity by mitogen-activated protein kinase. J Biol Chem 1997 ; 272 : 10811–10816. [CrossRef] [PubMed] [Google Scholar]
  40. Prusty D. Activation of MEK/ERK signaling promotes adipogenesis by enhancing peroxisome proliferator-activated receptor gamma (PPARgamma) and C/EBPalpha gene expression during the differentiation of 3T3–L1 preadipocytes. J Biol Chem 2002 ; 277 : 46226–46232. [CrossRef] [PubMed] [Google Scholar]
  41. Pagon Z, Volker J, Cooper GM, Hansen U. Mammalian transcription factor LSF is a target of ERK signaling. J Cell Biochem 2003 ; 89 : 733–746. [CrossRef] [PubMed] [Google Scholar]
  42. Volker JL, Rameh LE, Zhu Q, et al. Mitogenic stimulation of resting T cells causes rapid phosphorylation of the transcription factor LSF and increased DNA-binding activity. Genes Dev 1997 ; 11 : 1435–1446. [CrossRef] [PubMed] [Google Scholar]
  43. Coulombel L. Pluripotence : une définition à géométrie variable. Med Sci (Paris) 2009 ; 25 : 798–801. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.