Free Access
Med Sci (Paris)
Volume 28, Number 4, Avril 2012
Page(s) 416 - 422
Section M/S Revues
Published online 25 April 2012
  1. Kimura K, Toyooka S, Tsukuda K, et al. The aberrant promoter methylation of BMP3b and BMP6 in malignant pleural mesotheliomas. Oncol Rep 2008 ; 20 : 1265–1268. [PubMed] [Google Scholar]
  2. Bhatia M, Bonnet D, Wu D, et al. Bone morphogenetic proteins regulate the developmental program of human hematopoietic stem cells. J Exp Med 1999 ; 189 : 1139–1148. [CrossRef] [PubMed] [Google Scholar]
  3. Mira H, Andreu Z, Suh H, et al. Signaling through BMPR-IA regulates quiescence and long-term activity of neural stem cells in the adult hippocampus. Cell Stem Cell 2010 ; 7 : 78–89. [CrossRef] [PubMed] [Google Scholar]
  4. Bonaguidi MA, McGuire T, Hu M, et al. LIF and BMP signaling generate separate and discrete types of GFAP-expressing cells. Development 2005 ; 132 : 5503–5514. [CrossRef] [PubMed] [Google Scholar]
  5. Kobielak K, Stokes N, de la Cruz J, et al. Loss of a quiescent niche but not follicle stem cells in the absence of bone morphogenetic protein signaling. Proc Natl Acad Sci USA 2007 ; 104 : 10063–10068. [CrossRef] [Google Scholar]
  6. He XC, Zhang J, Tong WG, et al. BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-beta-catenin signaling. Nat Genet 2004 ; 36 : 1117–1121. [CrossRef] [PubMed] [Google Scholar]
  7. Vicente Lopez MA, Vazquez Garcia MN, Entrena A, et al. Low doses of bone morphogenetic protein 4 increase the survival of human adipose-derived stem cells maintaining their stemness and multipotency. Stem Cells Dev 2011 ; 20 : 1011–1019. [CrossRef] [PubMed] [Google Scholar]
  8. Maguer-Satta V, Bartholin L, Jeanpierre S, et al. Regulation of human erythropoiesis by activin A, BMP2, and BMP4, members of the TGFbeta family. Exp Cell Res 2003 ; 282 : 110–120. [CrossRef] [PubMed] [Google Scholar]
  9. Jeanpierre S, Nicolini FE, Kaniewski B, et al. BMP4 regulation of human megakaryocytic differentiation is involved in thrombopoietin signaling. Blood 2008 ; 112 : 3154–3163. [CrossRef] [PubMed] [Google Scholar]
  10. Kang Q, Song WX, Luo Q, et al. A comprehensive analysis of the dual roles of BMPs in regulating adipogenic and osteogenic differentiation of mesenchymal progenitor cells. Stem Cells Dev 2009 ; 18 : 545–559. [CrossRef] [PubMed] [Google Scholar]
  11. Hua H, Zhang YQ, Dabernat S, et al. BMP4 regulates pancreatic progenitor cell expansion through Id2. J Biol Chem 2006 ; 281 : 13574–13580. [CrossRef] [PubMed] [Google Scholar]
  12. Liu SY, Zhang ZY, Song YC, et al. SVZa neural stem cells differentiate into distinct lineages in response to BMP4. Exp Neurol 2004 ; 190 : 109–121. [CrossRef] [PubMed] [Google Scholar]
  13. Rajan P, Panchision DM, Newell LF, McKay RD. BMPs signal alternately through a SMAD or FRAP-STAT pathway to regulate fate choice in CNS stem cells. J Cell Biol 2003 ; 161 : 911–921. [CrossRef] [PubMed] [Google Scholar]
  14. Zhang J, Niu C, Ye L, et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 2003 ; 425 : 836–841. [CrossRef] [PubMed] [Google Scholar]
  15. Lim DA, Tramontin AD, Trevejo JM, et al. Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron 2000 ; 28 : 713–726. [CrossRef] [PubMed] [Google Scholar]
  16. Rendl M, Polak L, Fuchs E. BMP signaling in dermal papilla cells is required for their hair follicle-inductive properties. Genes Dev 2008 ; 22 : 543–557. [CrossRef] [PubMed] [Google Scholar]
  17. Haramis AP, Begthel H, van den BM, et al. De novo crypt formation and juvenile polyposis on BMP inhibition in mouse intestine. Science 2004 ; 303 : 1684–1686. [CrossRef] [PubMed] [Google Scholar]
  18. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997 ; 3 : 730–737. [CrossRef] [PubMed] [Google Scholar]
  19. Schatton T, Frank MH. Cancer stem cells and human malignant melanoma. Pigment Cell Melanoma Res 2008 ; 21 : 39–55. [CrossRef] [PubMed] [Google Scholar]
  20. Lee J, Son MJ, Woolard K, et al. Epigenetic-mediated dysfunction of the bone morphogenetic protein pathway inhibits differentiation of glioblastoma-initiating cells. Cancer Cell 2008 ; 13 : 69–80. [CrossRef] [PubMed] [Google Scholar]
  21. Piccirillo SG, Reynolds BA, Zanetti N, et al. Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 2006 ; 444 : 761–765. [CrossRef] [PubMed] [Google Scholar]
  22. Ruoslahti E. Fibronectin and its integrin receptors in cancer. Adv Cancer Res 1999 ; 76 : 1–20. [CrossRef] [PubMed] [Google Scholar]
  23. Hideshima T, Bergsagel PL, Kuehl WM, Anderson KC. Advances in biology of multiple myeloma: clinical applications. Blood 2004 ; 104 : 607–618. [CrossRef] [PubMed] [Google Scholar]
  24. Simon M, Grandage VL, Linch DC, Khwaja A. Constitutive activation of the Wnt/beta-catenin signalling pathway in acute myeloid leukaemia. Oncogene 2005 ; 24 : 2410–2420. [CrossRef] [PubMed] [Google Scholar]
  25. Paszek MJ, Zahir N, Johnson KR, et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 2005 ; 8 : 241–254. [CrossRef] [PubMed] [Google Scholar]
  26. Buesche G, Ganser A, Schlegelberger B, et al. Marrow fibrosis and its relevance during imatinib treatment of chronic myeloid leukemia. Leukemia 2007 ; 21 : 2420–2427. [CrossRef] [PubMed] [Google Scholar]
  27. Bock O, Hoftmann J, Theophile K, et al. Bone morphogenetic proteins are overexpressed in the bone marrow of primary myelofibrosis and are apparently induced by fibrogenic cytokines. Am J Pathol 2008 ; 172 : 951–960. [CrossRef] [PubMed] [Google Scholar]
  28. Tibullo D, Giallongo C, La Cava P, et al. Effects of imatinib mesylate in osteoblastogenesis. Exp Hematol 2009 ; 37 : 461–468. [CrossRef] [PubMed] [Google Scholar]
  29. Thiele J, Kvasnicka HM, Schmitt-Graeff A, et al. Bone marrow changes in chronic myelogenous leukaemia after long-term treatment with the tyrosine kinase inhibitor STI571: an immunohistochemical study on 75 patients. Histopathology 2005 ; 46 : 540–550. [CrossRef] [PubMed] [Google Scholar]
  30. Liu F, Bloch N, Bhushan KR, et al. Humoral bone morphogenetic protein 2 is sufficient for inducing breast cancer microcalcification. Mol Imaging 2008 ; 7 : 175–186. [PubMed] [Google Scholar]
  31. Lataillade JJ, Brunet de la Grange P, Uzan G, Le Bousse-Kerdilès MC. Les cellules souches ont-elles l’âge de leur niche ? À la recherche d’un sérum de jouvence. Med Sci (Paris) 2010 ; 26 : 582–585. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  32. Cachat A, Villaudy J, Rigal D, Gazzolo L, Duc Dodon M. Les souris ne sont pas des hommes et pourtant… Ce que les souris humanisées nous apprennent sur les maladies infectieuses. Med Sci (Paris) 2012 ; 28 : 63–68. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  33. Joubert D, Hollande F, Jay P, Legraverend C. Les cellules souches intestinales : 30 ans d’une histoire exemplaire. Med Sci (Paris) 2009 ; 25 : 441–444. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  34. Häfner S, Coulombel L. L’oligarchie contestée des cellules souches cancéreuses. Med Sci (Paris) 2009 ; 25 : 227–228. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.