Free Access
Med Sci (Paris)
Volume 28, Number 4, Avril 2012
Page(s) 423 - 429
Section M/S Revues
Published online 25 April 2012
  1. Bisaillon M. La structure-coiffe des ARN messagers. Med Sci (Paris) 2001 ; 17 : 312–319. [CrossRef] [Google Scholar]
  2. Decroly E, Ferron F, Lescar J, Canard B. Conventional and unconventional mechanisms for capping viral mRNA. Nat Rev Microbiol 2011 ; 10 : 51–65. [CrossRef] [PubMed] [Google Scholar]
  3. Quiocho FA, Hu G, Gershon PD. Structural basis of mRNA cap recognition by proteins. Curr Opin Struct Biol 2000 ; 10 : 78–86. [CrossRef] [PubMed] [Google Scholar]
  4. Parent A, Bisaillon M. Synergie entre les complexes de transcription et de maturation des ARN messagers. Med Sci (Paris) 2006 ; 22 : 626–632. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  5. Kowalinski E, Lunardi T, McCarthy AA, et al. Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA. Cell 2011 ; 147 : 423–435. [CrossRef] [PubMed] [Google Scholar]
  6. Zust R, Cervantes-Barragan L, Habjan M, et al. Ribose 2’-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat Immunol 2011 ; 12 : 137–143. [CrossRef] [PubMed] [Google Scholar]
  7. Ghosh A, Shuman S, Lima CD. Structural insights to how mammalian capping enzyme reads the CTD code. Mol Cell 2011 ; 43 : 299–310. [CrossRef] [PubMed] [Google Scholar]
  8. Kuge H, Brownlee GG, Gershon PD, Richter JD. Cap ribose methylation of c-mos mRNA stimulates translation and oocyte maturation in Xenopus laevis. Nucleic Acids Res 1998 ; 26 : 3208–3214. [CrossRef] [PubMed] [Google Scholar]
  9. Fitzgerald KD, Semler BL. Bridging IRES elements in mRNAs to the eukaryotic translation apparatus. Biochim Biophys Acta 2009 ; 1789 : 518–528. [PubMed] [Google Scholar]
  10. Dias A, Bouvier D, Crepin T, et al. The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit. Nature 2009 ; 458 : 914–918. [CrossRef] [PubMed] [Google Scholar]
  11. Li J, Wang JT, Whelan SP. A unique strategy for mRNA cap methylation used by vesicular stomatitis virus. Proc Natl Acad Sci USA 2006 ; 103 : 8493–8498. [CrossRef] [Google Scholar]
  12. Ahola T, Laakkonen P, Vihinen H, Kaariainen L. Critical residues of Semliki Forest virus RNA capping enzyme involved in methyltransferase and guanylyltransferase-like activities. J Virol 1997 ; 71 : 392–397. [PubMed] [Google Scholar]
  13. Sutton G, Grimes JM, Stuart DI, Roy P. Bluetongue virus VP4 is an RNA-capping assembly line. Nat Struct Mol Biol 2007 ; 14 : 449–451. [CrossRef] [PubMed] [Google Scholar]
  14. Shuman S. Catalytic activity of vaccinia mRNA capping enzyme subunits coexpressed in Escherichia coli. J Biol Chem 1990 ; 265 : 11960–11966. [PubMed] [Google Scholar]
  15. De la Pena M, Kyrieleis OJ, Cusack S. Structural insights into the mechanism and evolution of the vaccinia virus mRNA cap N7 methyl-transferase. EMBO J 2007 ; 26 : 4913–4925. [CrossRef] [PubMed] [Google Scholar]
  16. Zhang X, Walker SB, Chipman PR, et al. Reovirus polymerase lambda 3 localized by cryo-electron microscopy of virions at a resolution of 7.6 A. Nat Struct Biol 2003 ; 10 : 1011–1018. [CrossRef] [PubMed] [Google Scholar]
  17. Egloff MP, Decroly E, Malet H, et al. Structural and functional analysis of methylation and 5’-RNA sequence requirements of short capped RNAs by the methyltransferase domain of dengue virus NS5. J Mol Biol 2007 ; 372 : 723–736. [CrossRef] [PubMed] [Google Scholar]
  18. Ray D, Shah A, Tilgner M, et al. West Nile virus 5’-cap structure is formed by sequential guanine N-7 and ribose 2’-O methylations by nonstructural protein 5. J Virol 2006 ; 80 : 8362–8370. [CrossRef] [PubMed] [Google Scholar]
  19. Bisaillon M, Shuman S. Structure-function analysis of the active site tunnel of yeast RNA triphosphatase. J Biol Chem 2001 ; 276 : 17261–17266. [CrossRef] [PubMed] [Google Scholar]
  20. Vasquez-Del Carpio R, Gonzalez-Nilo FD, Riadi G, et al. Histidine triad-like motif of the rotavirus NSP2 octamer mediates both RTPase and NTPase activities. J Mol Biol 2006 ; 362 : 539–554. [CrossRef] [PubMed] [Google Scholar]
  21. Benarroch D, Selisko B, Locatelli GA, et al. The RNA helicase, nucleotide 5’-triphosphatase, and RNA 5’-triphosphatase activities of dengue virus protein NS3 are Mg2+-dependent and require a functional Walker B motif in the helicase catalytic core. Virology 2004 ; 328 : 208–218. [CrossRef] [PubMed] [Google Scholar]
  22. Changela A, Ho CK, Martins A, et al. Structure and mechanism of the RNA triphosphatase component of mammalian mRNA capping enzyme. EMBO J 2001 ; 20 : 2575–2586. [CrossRef] [PubMed] [Google Scholar]
  23. Martins A, Shuman S. Mechanism of phosphoanhydride cleavage by baculovirus phosphatase. J Biol Chem 2000 ; 275 : 35070–35076. [CrossRef] [PubMed] [Google Scholar]
  24. Hakansson K, Doherty AJ, Shuman S, Wigley DB. X-ray crystallography reveals a large conformational change during guanyl transfer by mRNA capping enzymes. Cell 1997 ; 89 : 545–553. [CrossRef] [PubMed] [Google Scholar]
  25. Reinisch KM, Nibert ML, Harrison SC. Structure of the reovirus core at 3.6 A resolution. Nature 2000 ; 404 : 960–967. [CrossRef] [PubMed] [Google Scholar]
  26. Hodel AE, Gershon PD, Shi X, Quiocho FA. The 1.85 A structure of vaccinia protein VP39: a bifunctional enzyme that participates in the modification of both mRNA ends. Cell 1996 ; 85 : 247–256. [CrossRef] [PubMed] [Google Scholar]
  27. Decroly E, Debarnot C, Ferron F, et al. Crystal structure and functional analysis of the SARS-coronavirus RNA cap 2’-O-methyltransferase nsp10/nsp16 complex. PLoS Pathog 2011 ; 7 : e1002059. [CrossRef] [PubMed] [Google Scholar]
  28. Li C, Xia Y, Gao X, Gershon PD. Mechanism of RNA 2’-O-methylation: evidence that the catalytic lysine acts to steer rather than deprotonate the target nucleophile. Biochemistry 2004 ; 43 : 5680–5687. [CrossRef] [PubMed] [Google Scholar]
  29. Fabrega C, Hausmann S, Shen V, et al. Structure and mechanism of mRNA cap (guanine-N7) methyltransferase. Mol Cell 2004 ; 13 : 77–89. [CrossRef] [PubMed] [Google Scholar]
  30. Bouvet M, Debarnot C, Imbert I, et al. In vitro reconstitution of SARS-coronavirus mRNA cap methylation. PLoS Pathog 2010 ; 6 : e1000863. [CrossRef] [PubMed] [Google Scholar]
  31. Kowalinski E, Louber J, Gerlier D, Cusack S. RIG-I : un commutateur moléculaire détecteur d’ARN viral. Med Sci (Paris) 2012 ; 28 : 136–138. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.