Accès gratuit
Numéro
Med Sci (Paris)
Volume 28, Numéro 4, Avril 2012
Page(s) 423 - 429
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2012284021
Publié en ligne 25 avril 2012
  1. Bisaillon M. La structure-coiffe des ARN messagers. Med Sci (Paris) 2001 ; 17 : 312–319. [CrossRef] [Google Scholar]
  2. Decroly E, Ferron F, Lescar J, Canard B. Conventional and unconventional mechanisms for capping viral mRNA. Nat Rev Microbiol 2011 ; 10 : 51–65. [PubMed] [Google Scholar]
  3. Quiocho FA, Hu G, Gershon PD. Structural basis of mRNA cap recognition by proteins. Curr Opin Struct Biol 2000 ; 10 : 78–86. [CrossRef] [PubMed] [Google Scholar]
  4. Parent A, Bisaillon M. Synergie entre les complexes de transcription et de maturation des ARN messagers. Med Sci (Paris) 2006 ; 22 : 626–632. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  5. Kowalinski E, Lunardi T, McCarthy AA, et al. Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA. Cell 2011 ; 147 : 423–435. [CrossRef] [PubMed] [Google Scholar]
  6. Zust R, Cervantes-Barragan L, Habjan M, et al. Ribose 2’-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat Immunol 2011 ; 12 : 137–143. [CrossRef] [PubMed] [Google Scholar]
  7. Ghosh A, Shuman S, Lima CD. Structural insights to how mammalian capping enzyme reads the CTD code. Mol Cell 2011 ; 43 : 299–310. [CrossRef] [PubMed] [Google Scholar]
  8. Kuge H, Brownlee GG, Gershon PD, Richter JD. Cap ribose methylation of c-mos mRNA stimulates translation and oocyte maturation in Xenopus laevis. Nucleic Acids Res 1998 ; 26 : 3208–3214. [CrossRef] [PubMed] [Google Scholar]
  9. Fitzgerald KD, Semler BL. Bridging IRES elements in mRNAs to the eukaryotic translation apparatus. Biochim Biophys Acta 2009 ; 1789 : 518–528. [PubMed] [Google Scholar]
  10. Dias A, Bouvier D, Crepin T, et al. The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit. Nature 2009 ; 458 : 914–918. [CrossRef] [PubMed] [Google Scholar]
  11. Li J, Wang JT, Whelan SP. A unique strategy for mRNA cap methylation used by vesicular stomatitis virus. Proc Natl Acad Sci USA 2006 ; 103 : 8493–8498. [CrossRef] [Google Scholar]
  12. Ahola T, Laakkonen P, Vihinen H, Kaariainen L. Critical residues of Semliki Forest virus RNA capping enzyme involved in methyltransferase and guanylyltransferase-like activities. J Virol 1997 ; 71 : 392–397. [PubMed] [Google Scholar]
  13. Sutton G, Grimes JM, Stuart DI, Roy P. Bluetongue virus VP4 is an RNA-capping assembly line. Nat Struct Mol Biol 2007 ; 14 : 449–451. [CrossRef] [PubMed] [Google Scholar]
  14. Shuman S. Catalytic activity of vaccinia mRNA capping enzyme subunits coexpressed in Escherichia coli. J Biol Chem 1990 ; 265 : 11960–11966. [PubMed] [Google Scholar]
  15. De la Pena M, Kyrieleis OJ, Cusack S. Structural insights into the mechanism and evolution of the vaccinia virus mRNA cap N7 methyl-transferase. EMBO J 2007 ; 26 : 4913–4925. [CrossRef] [PubMed] [Google Scholar]
  16. Zhang X, Walker SB, Chipman PR, et al. Reovirus polymerase lambda 3 localized by cryo-electron microscopy of virions at a resolution of 7.6 A. Nat Struct Biol 2003 ; 10 : 1011–1018. [CrossRef] [PubMed] [Google Scholar]
  17. Egloff MP, Decroly E, Malet H, et al. Structural and functional analysis of methylation and 5’-RNA sequence requirements of short capped RNAs by the methyltransferase domain of dengue virus NS5. J Mol Biol 2007 ; 372 : 723–736. [CrossRef] [PubMed] [Google Scholar]
  18. Ray D, Shah A, Tilgner M, et al. West Nile virus 5’-cap structure is formed by sequential guanine N-7 and ribose 2’-O methylations by nonstructural protein 5. J Virol 2006 ; 80 : 8362–8370. [CrossRef] [PubMed] [Google Scholar]
  19. Bisaillon M, Shuman S. Structure-function analysis of the active site tunnel of yeast RNA triphosphatase. J Biol Chem 2001 ; 276 : 17261–17266. [CrossRef] [PubMed] [Google Scholar]
  20. Vasquez-Del Carpio R, Gonzalez-Nilo FD, Riadi G, et al. Histidine triad-like motif of the rotavirus NSP2 octamer mediates both RTPase and NTPase activities. J Mol Biol 2006 ; 362 : 539–554. [CrossRef] [PubMed] [Google Scholar]
  21. Benarroch D, Selisko B, Locatelli GA, et al. The RNA helicase, nucleotide 5’-triphosphatase, and RNA 5’-triphosphatase activities of dengue virus protein NS3 are Mg2+-dependent and require a functional Walker B motif in the helicase catalytic core. Virology 2004 ; 328 : 208–218. [CrossRef] [PubMed] [Google Scholar]
  22. Changela A, Ho CK, Martins A, et al. Structure and mechanism of the RNA triphosphatase component of mammalian mRNA capping enzyme. EMBO J 2001 ; 20 : 2575–2586. [CrossRef] [PubMed] [Google Scholar]
  23. Martins A, Shuman S. Mechanism of phosphoanhydride cleavage by baculovirus phosphatase. J Biol Chem 2000 ; 275 : 35070–35076. [CrossRef] [PubMed] [Google Scholar]
  24. Hakansson K, Doherty AJ, Shuman S, Wigley DB. X-ray crystallography reveals a large conformational change during guanyl transfer by mRNA capping enzymes. Cell 1997 ; 89 : 545–553. [CrossRef] [PubMed] [Google Scholar]
  25. Reinisch KM, Nibert ML, Harrison SC. Structure of the reovirus core at 3.6 A resolution. Nature 2000 ; 404 : 960–967. [CrossRef] [PubMed] [Google Scholar]
  26. Hodel AE, Gershon PD, Shi X, Quiocho FA. The 1.85 A structure of vaccinia protein VP39: a bifunctional enzyme that participates in the modification of both mRNA ends. Cell 1996 ; 85 : 247–256. [CrossRef] [PubMed] [Google Scholar]
  27. Decroly E, Debarnot C, Ferron F, et al. Crystal structure and functional analysis of the SARS-coronavirus RNA cap 2’-O-methyltransferase nsp10/nsp16 complex. PLoS Pathog 2011 ; 7 : e1002059. [CrossRef] [PubMed] [Google Scholar]
  28. Li C, Xia Y, Gao X, Gershon PD. Mechanism of RNA 2’-O-methylation: evidence that the catalytic lysine acts to steer rather than deprotonate the target nucleophile. Biochemistry 2004 ; 43 : 5680–5687. [CrossRef] [PubMed] [Google Scholar]
  29. Fabrega C, Hausmann S, Shen V, et al. Structure and mechanism of mRNA cap (guanine-N7) methyltransferase. Mol Cell 2004 ; 13 : 77–89. [CrossRef] [PubMed] [Google Scholar]
  30. Bouvet M, Debarnot C, Imbert I, et al. In vitro reconstitution of SARS-coronavirus mRNA cap methylation. PLoS Pathog 2010 ; 6 : e1000863. [CrossRef] [PubMed] [Google Scholar]
  31. Kowalinski E, Louber J, Gerlier D, Cusack S. RIG-I : un commutateur moléculaire détecteur d’ARN viral. Med Sci (Paris) 2012 ; 28 : 136–138. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.