Accès gratuit
Numéro
Med Sci (Paris)
Volume 28, Numéro 4, Avril 2012
Page(s) 403 - 408
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2012284018
Publié en ligne 25 avril 2012
  1. Vivier E, Tomasello E, Baratin, et al. Functions of natural killer cells. Nat Immunol 2008 ; 9 : 503–510. [CrossRef] [PubMed]
  2. Diefenbach A, Raulet DH. Strategies for target cell recognition by natural killer cells. Immunol Rev 2001 ; 181 : 170–184. [CrossRef] [PubMed]
  3. Di Santo JP. Functionally distinct NK-cell subsets: developmental origins and biological implications. Eur J Immunol 2008 ; 38 : 2948–2951. [CrossRef] [PubMed]
  4. Walzer T, Vivier E. G-protein-coupled receptors in control of natural killer cell migration. Trends Immunol 2011 ; 32 : 486–492. [CrossRef] [PubMed]
  5. Trinchieri G. Biology of natural killer cells. Adv Immunol 1989 ; 47 : 187–376. [CrossRef] [PubMed]
  6. Carotta S, Pang SHM, Nutt SL, Belz GT. Identification of the earliest NK-cell precursor in the mouse BM. Blood 2011 ; 117 : 5449–5452. [CrossRef] [PubMed]
  7. Kim S, Iizuka K, Kang HSP, et al. In vivo developmental stages in murine natural killer cell maturation. Nat Immunol 2002 ; 3 : 523–528. [CrossRef] [PubMed]
  8. Hayakawa Y, Smyth MJ. CD27 dissects mature NK cells into two subsets with distinct responsiveness and migratory capacity. J Immunol 2006 ; 176 : 1517–1524. [PubMed]
  9. Chiossone L, Chaix J, Fuseri N, et al. Maturation of mouse NK cells is a 4-stage developmental program. Blood 2009 ; 113 : 5488–5496. [CrossRef] [PubMed]
  10. Fang M, Roscoe F, Sigal LJ. Age-dependent susceptibility to a viral disease due to decreased natural killer cell numbers and trafficking. J Exp Med 2010 ; 207 : 2369–2381. [CrossRef] [PubMed]
  11. Walzer T, Chiossone L, Chaix J, et al. Natural killer cell trafficking in vivo requires a dedicated sphingosine 1-phosphate receptor. Nat Immunol 2007 ; 8 : 1337–1344. [CrossRef] [PubMed]
  12. Mayol K, Biajoux V, Marvel J, et al. Sequential desensitization of CXCR4 and S1P5 controls natural killer cell trafficking. Blood 2011 ; 118 : 4863–4871. [CrossRef] [PubMed]
  13. Thomas SY, Scanlon ST, Griewank KG, et al. PLZF induces an intravascular surveillance program mediated by long-lived LFA-1-ICAM-1 interactions. J Exp Med 2011 ; 208 : 1179–1188. [CrossRef] [PubMed]
  14. Lodolce JP, Boone DL, Chai S, et al. IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity 1998 ; 9 : 669–676. [CrossRef] [PubMed]
  15. Rubinstein MP, Kovar M, Purton JF, et al. Converting IL-15 to a superagonist by binding to soluble IL-15R(alpha). Proc Natl Acad Sci USA 2006 ; 103 : 9166–9171. [CrossRef]
  16. Burkett PR, Koka R, Chien M, et al. Coordinate expression and trans presentation of interleukin (IL)-15Ralpha and IL-15 supports natural killer cell and memory CD8+ T cell homeostasis. J Exp Med 2004 ; 200 : 825–834. [CrossRef] [PubMed]
  17. Nguyen KB, Salazar-Mather TP, Dalod MY, et al. Coordinated and distinct roles for IFN-alpha beta, IL-12, and IL-15 regulation of NK cell responses to viral infection. J Immunol 2002 ; 169 : 4279–4287. [PubMed]
  18. Sun JC, Ma A, Lanier LL. Cutting edge: IL-15-independent NK cell response to mouse cytomegalovirus infection. J Immunol 2009 ; 183 : 2911–2914. [CrossRef] [PubMed]
  19. Guimond M, Freud AG, Mao HC, et al. In vivo role of Flt3 ligand and dendritic cells in NK cell homeostasis. J Immunol 2010 ; 184 : 2769–2775. [CrossRef] [PubMed]
  20. Hochweller K, Striegler J, Hämmerling GJ, Garbi N. A novel CD11c.DTR transgenic mouse for depletion of dendritic cells reveals their requirement for homeostatic proliferation of natural killer cells. Eur J Immunol 2008 ; 38 : 2776–2783. [CrossRef] [PubMed]
  21. Soderquest K, Powell N, Luci C, et al. Monocytes control natural killer cell differentiation to effector phenotypes. Blood 2011 ; 117 : 4511–4518. [CrossRef] [PubMed]
  22. Cooper MA, Bush JE, Fehniger, et al. In vivo evidence for a dependence on interleukin 15 for survival of natural killer cells. Blood 2002 ; 100 : 3633–3638. [CrossRef] [PubMed]
  23. Huntington ND, Puthalakath H, Gunn P, et al. Interleukin 15-mediated survival of natural killer cells is determined by interactions among Bim, Noxa and Mcl-1. Nat Immunol 2007 ; 8 : 856–863. [CrossRef] [PubMed]
  24. Jamieson AM, Isnard P, Dorfman JR, et al. Turnover and proliferation of NK cells in steady state and lymphopenic conditions. J Immunol 2004 ; 172 : 864–870. [PubMed]
  25. Robbins SH, Tessmer MS, Mikayama T, Brossay L. Expansion and contraction of the NK cell compartment in response to murine cytomegalovirus infection. J Immunol 2004 ; 173 : 259–266. [PubMed]
  26. Prlic M, Blazar BR, Farrar MA, Jameson SC. In vivo survival and homeostatic proliferation of natural killer cells. J Exp Med 2003 ; 197 : 967–976. [CrossRef] [PubMed]
  27. Sun JC, Beilke JN, Bezman NA, Lanier LL. Homeostatic proliferation generates long-lived natural killer cells that respond against viral infection. J Exp Med 2011 ; 208 : 357–368. [CrossRef] [PubMed]
  28. Arase H, Mocarski ES, Campbell AE, et al. Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science 2002 ; 296 : 1323–1326. [CrossRef] [PubMed]
  29. Dokun AO, Kim S, Smith HR, et al. Specific and nonspecific NK cell activation during virus infection. Nat Immunol 2001 ; 2 : 951–956. [CrossRef] [PubMed]
  30. Sun JC, Beilke JN, Lanier LL. Adaptive immune features of natural killer cells. Nature 2009 ; 457 : 557–561. [CrossRef] [PubMed]
  31. Lopez-Vergès S, Milush JM, Schwartz BS, et al. Expansion of a unique CD57+NKG2Chi natural killer cell subset during acute human cytomegalovirus infection. Proc Natl Acad Sci USA 2011 ; 108 : 14725–14732. [CrossRef]
  32. Björkström NK, Lindgren T, Stoltz M, et al. Rapid expansion and long-term persistence of elevated NK cell numbers in humans infected with hantavirus. J Exp Med 2011 ; 208 : 13–21. [CrossRef] [PubMed]
  33. O’Leary JG., Goodarzi M, Drayton DL, von Andrian UH. T cell- and B cell-independent adaptive immunity mediated by natural killer cells. Nat Immunol 2006 ; 7 : 507–516. [CrossRef] [PubMed]
  34. Paust S, Gill HS, Wang BZ, et al. Critical role for the chemokine receptor CXCR6 in NK cell-mediated antigen-specific memory of haptens and viruses. Nat Immunol 2010 ; 11 : 1127–1135. [CrossRef] [PubMed]
  35. Rouzaire P, Luci C, Blasco E, et al. Natural killer cells and T cells induce different types of skin reactions during recall responses to haptens. Eur J Immunol 2012 ; 42 : 80–88. [CrossRef] [PubMed]
  36. Schlub TE, Sun JC, Walton SM, et al. Comparing the kinetics of NK cells, CD4, and CD8 T cells in murine cytomegalovirus infection. J Immunol 2011 ; 187 : 1385–1392. [CrossRef] [PubMed]
  37. Busche A, Schmitz S, Fleige H, et al. Genetic labeling reveals altered turnover and stability of innate lymphocytes in latent mouse cytomegalovirus infection. J Immunol 2011 ; 186 : 2918–2925. [CrossRef] [PubMed]
  38. Bercovici N, Caignard A. Rencontre avec un pathogène : les cellules natural killer se souviennent-elles ? Med Sci (Paris) 2009 ; 25 : 559–562. [CrossRef] [EDP Sciences] [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.