Accès gratuit
Numéro |
Med Sci (Paris)
Volume 28, Numéro 4, Avril 2012
|
|
---|---|---|
Page(s) | 395 - 402 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2012284017 | |
Publié en ligne | 25 avril 2012 |
- Liégeois JF, Mercier F, Graulich A, et al. Modulation of small conductance calcium-activated potassium (SK) channels: a new challenge in medicinal chemistry. Curr Med Chem 2003 ; 10 : 625–647. [CrossRef] [PubMed] [Google Scholar]
- Shieh CC, Coghlan M, Sullivan JP, Gopalakrishnan M. Potassium channels: molecular defects, diseases, and therapeutic opportunities. Pharmacol Rev 2000 ; 52 : 557–594. [PubMed] [Google Scholar]
- Burg ED, Remillard CV, Yuan JX. K+ channels in apoptosis. J Membr Biol 2006 ; 209 : 3–20. [CrossRef] [PubMed] [Google Scholar]
- Potier M, Joulin V, Roger S, et al. Identification of SK3 channel as a new mediator of breast cancer cell migration. Mol Cancer Ther 2006 ; 5 : 2946–2953. [CrossRef] [PubMed] [Google Scholar]
- Schwab A, Nechyporuk-Zloy V, Fabian A, Stock C. Cells move when ions and water flow. Pflugers Arch 2007 ; 453 : 421–432. [CrossRef] [PubMed] [Google Scholar]
- Gutman GA, Chandy KG, Adelman JP, et al. International union of pharmacology. XLI. Compendium of voltage-gated ion channels: potassium channels. Pharmacol Rev 2003 ; 55 : 583–586. [CrossRef] [PubMed] [Google Scholar]
- Moulton G, Attwood TK, Parry-Smith DJ, Packer JC. Phylogenomic analysis and evolution of the potassium channel gene family. Receptor Channel 2003 ; 9 : 363–377. [Google Scholar]
- Choe S. Potassium channel structures. Nat Rev Neurosci 2002 ; 3 : 115–121. [CrossRef] [PubMed] [Google Scholar]
- Bayliss DA, Barrett PQ. Emerging roles for two-pore-domain potassium channels and their potential therapeutic impact. Trends Pharmacol Sci 2008 ; 29 : 566–575. [CrossRef] [PubMed] [Google Scholar]
- Lotshaw DP. Biophysical, pharmacological, and functional characteristics of cloned and native mammalian two-pore domain K+ channels. Cell Biochem Biophys 2007 ; 47 : 209–256. [CrossRef] [PubMed] [Google Scholar]
- Doyle DA, Morais Cabral J, Pfuetzner RA, et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 1998 ; 280 : 69–77. [CrossRef] [PubMed] [Google Scholar]
- Heginbotham L, Lu Z, Abramson T, MacKinnon R. Mutations in the K+ channel signature sequence. Biophys J 1994 ; 66 : 1061–1067. [CrossRef] [PubMed] [Google Scholar]
- Roux B, MacKinnon R. The cavity and pore helices in the KcsA K+ channel: electrostatic stabilization of monovalent cations. Science 1999 ; 285 : 100–102. [CrossRef] [PubMed] [Google Scholar]
- Zhou Y, Morais-Cabral JH, Kaufman A, MacKinnon R. Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 A resolution. Nature 2001 ; 414 : 43–48. [CrossRef] [PubMed] [Google Scholar]
- Morais-Cabral JH, Zhou Y, MacKinnon R. Energetic optimization of ion conduction rate by the K+ selectivity filter. Nature 2001 ; 414 : 37–42. [CrossRef] [PubMed] [Google Scholar]
- Parent L, Sauvé R, Bernèche S, Roux B. À bas les barrières… d’énergie dans les canaux potassiques! Med Sci (Paris) 2002 ; 18 : 605–609. [CrossRef] [EDP Sciences] [Google Scholar]
- Dilly S, Lamy C, Marrion NV, et al. Ion-channel modulators: more diversity than previously thought. Chembiochem 2011 ; 12 : 1808–1812. [CrossRef] [PubMed] [Google Scholar]
- Swartz KJ, MacKinnon R. Hanatoxin modifies the gating of a voltage-dependent K+ channel through multiple binding sites. Neuron 1997 ; 18 : 665–673. [CrossRef] [PubMed] [Google Scholar]
- Kavanaugh MP, Varnum MD, Osborne PB, et al. Interaction between tetraethylammonium and amino acid residues in the pore of cloned voltage-dependent potassium channels. J Biol Chem 1991 ; 266 : 7583–7587. [PubMed] [Google Scholar]
- Miller C. Competition for block of a Ca2+-activated K+ channel by charybdotoxin and tetraethylammonium. Neuron 1988 ; 1 : 1003–1006. [CrossRef] [PubMed] [Google Scholar]
- Lamy C, Goodchild SJ, Weatherall KL, et al. Allosteric block of KCa2 channels by apamin. J Biol Chem 2010 ; 285 : 27067–27077. [CrossRef] [PubMed] [Google Scholar]
- Stocker M, Pedarzani P. Differential distribution of three Ca2+-activated K+ channel subunits, SK1, SK2, and SK3, in the adult rat central nervous system. Mol Cell Neurosci 2000 ; 15 : 476–493. [CrossRef] [PubMed] [Google Scholar]
- Rouchet N, Waroux O, Lamy C, et al. SK channel blockade promotes burst firing in dorsal raphe serotonergic neurons. Eur J Neurosci 2008 ; 28 : 1108–1115. [CrossRef] [PubMed] [Google Scholar]
- Waroux O, Massotte L, Alleva L, et al. SK channels control the firing pattern of midbrain dopaminergic neurons in vivo. Eur J Neurosci 2005 ; 22 : 3111–3121. [CrossRef] [PubMed] [Google Scholar]
- Diness JG, Sorensen US, Nissen JD, et al. Inhibition of small-conductance Ca2+-activated K+ channels terminates and protects against atrial fibrillation. Circ Arrhythm Electrophysiol 2010 ; 3 : 380–390. [CrossRef] [PubMed] [Google Scholar]
- Grube S, Gerchen MF, Adamcio B, et al. A CAG repeat polymorphism of KCNN3 predicts SK3 channel function and cognitive performance in schizophrenia. EMBO Mol Med 2011 ; 3 : 309–319. [CrossRef] [PubMed] [Google Scholar]
- Shakkottai VG, Regaya I, Wulff H, et al. Design and characterization of a highly selective peptide inhibitor of the small conductance calcium-activated K+ channel, SkCa2. J Biol Chem 2001 ; 276 : 43145–43151. [CrossRef] [PubMed] [Google Scholar]
- Hugues M, Romey G, Duval D, et al. Apamin as a selective blocker of the calcium-dependent potassium channel in neuroblastoma cells: voltage-clamp and biochemical characterization of the toxin receptor. Proc Natl Acad Sci USA 1982 ; 79 : 1308–1312. [CrossRef] [Google Scholar]
- Grunnet M, Jensen BS, Olesen SP, Klaerke DA. Apamin interacts with all subtypes of cloned small-conductance Ca2+-activated K+ channels. Pflugers Arch 2001 ; 441 : 544–550. [CrossRef] [PubMed] [Google Scholar]
- Pedarzani P, Stocker M. Molecular and cellular basis of small- and intermediate-conductance, calcium-activated potassium channel function in the brain. Cell Mol Life Sci 2008 ; 65 : 3196–3217. [CrossRef] [PubMed] [Google Scholar]
- Weatherall KL, Seutin V, Liegeois JF, Marrion NV. Crucial role of a shared extracellular loop in apamin sensitivity and maintenance of pore shape of small-conductance calcium-activated potassium (SK) channels. Proc Natl Acad Sci USA 2011 ; 108 : 18494–18499. [CrossRef] [Google Scholar]
- Campos Rosa J, Galanakis D, Piergentili A, et al. Synthesis, molecular modeling, and pharmacological testing of bis-quinolinium cyclophanes: potent, non-peptidic blockers of the apamin-sensitive Ca2+-activated K+ channel. J Med Chem 2000 ; 43 : 420–431. [CrossRef] [PubMed] [Google Scholar]
- Chen JQ, Galanakis D, Ganellin CR, et al. bis-Quinolinium cyclophanes: 8,14-diaza-1,7(1,4)-diquinolinacyclotetradecaphane (UCL 1848), a highly potent and selective, nonpeptidic blocker of the apamin-sensitive Ca2+-activated K+ channel. J Med Chem 2000 ; 43 : 3478–3481. [CrossRef] [PubMed] [Google Scholar]
- Olesen SP, Munch E, Moldt P, Drejer J. Selective activation of Ca2+-dependent K+ channels by novel benzimidazolone. Eur J Pharmacol 1994 ; 251 : 53–59. [CrossRef] [PubMed] [Google Scholar]
- Girault A, Haelters JP, Potier M, et al. New alkyl-lipid blockers of SK3 channels reduce cancer-cell migration and occurrence of metastasis. Curr Cancer Drug Targets 2011 ; 11 : 1111–1125. [CrossRef] [PubMed] [Google Scholar]
- Strobaek D, Hougaard C, Johansen TH, et al. Inhibitory gating modulation of small conductance Ca2+-activated K+ channels by the synthetic compound (R)-N-(benzimidazol-2-yl)-1,2,3,4-tetrahydro-1-naphtylamine (NS8593) reduces afterhyperpolarizing current in hippocampal CA1 neurons. Mol Pharmacol 2006 ; 70 : 1771–1782. [CrossRef] [PubMed] [Google Scholar]
- Pedarzani P, Mosbacher J, Rivard A, et al. Control of electrical activity in central neurons by modulating the gating of small conductance Ca2+-activated K+ channels. J Biol Chem 2001 ; 276 : 9762–9769. [CrossRef] [PubMed] [Google Scholar]
- Jenkins DP, Strobaek D, Hougaard C, et al. Negative gating modulation by (R)-N-(benzimidazol-2-yl)-1,2,3,4-tetrahydro-1-naphthylamine (NS8593) depends on residues in the inner pore vestibule: pharmacological evidence of deep-pore gating of K(Ca)2 channels. Mol Pharmacol 2011 ; 79 : 899–909. [CrossRef] [PubMed] [Google Scholar]
- Potier M, Chantome A, Joulin V, et al. The SK3/K(Ca)2.3 potassium channel is a new cellular target for edelfosine. Br J Pharmacol 2011 ; 162 : 464–479. [CrossRef] [PubMed] [Google Scholar]
- Seutin V, Scuvée-Moreau J, Dresse A. Evidence for a non-GABAergic action of quaternary salts of bicuculline on dopaminergic neurones. Neuropharmacology 1997 ; 36 : 1653–1657. [CrossRef] [PubMed] [Google Scholar]
- Scuvée-Moreau J, Boland A, Graulich A, et al. Electrophysiological characterization of the SK channel blockers methyl-laudanosine and methyl-noscapine in cell lines and rat brain slices. Br J Pharmacol 2004 ; 143 : 753–764. [CrossRef] [PubMed] [Google Scholar]
- Scuvée-Moreau J, Liégeois JF, Massotte L, Seutin V. Methyl-laudanosine: a new pharmacological tool to investigate the function of small-conductance Ca2+-activated K+ channels. J Pharmacol Exp Ther 2002 ; 302 : 1176–1183. [CrossRef] [PubMed] [Google Scholar]
- Graulich A, Dilly S, Farce A, et al. Synthesis and radioligand binding studies of bis-isoquinolinium derivatives as small conductance Ca2+-activated K+ channel blockers. J Med Chem 2007 ; 50 : 5070–5075. [CrossRef] [PubMed] [Google Scholar]
- Dilly S, Graulich A, Farce A, et al. Identification of a pharmacophore of SKCa channel blockers. J Enzyme Inhib Med Chem 2005 ; 20 : 517–523. [CrossRef] [PubMed] [Google Scholar]
- Martina M, Turcotte ME, Halman S, Bergeron R. The sigma-1 receptor modulates NMDA receptor synaptic transmission and plasticity via SK channels in rat hippocampus. J Physiol 2007 ; 578 : 143–157. [CrossRef] [PubMed] [Google Scholar]
- Lamy C, Scuvée-Moreau J, Dilly S, et al. The sigma agonist 1,3-di-o-tolyl-guanidine directly blocks SK channels in dopaminergic neurons and in cell lines. Eur J Pharmacol 2010 ; 641 : 23–28. [CrossRef] [PubMed] [Google Scholar]
- Graulich A, Lamy C, Alleva L, et al. Bis-tetrahydroisoquinoline derivatives: AG525E1, a new step in the search for non-quaternary non-peptidic small conductance Ca2+-activated K+ channel blockers. Bioorg Med Chem Lett 2008 ; 18 : 3440–3445. [CrossRef] [PubMed] [Google Scholar]
- Neny M, Lemmer Y, Graulich A, et al. The SK channel blocker AG525E1 increases locomotor activity and in vivo dopamine release in the rat nucleus accumbens. In : Phillips PEM SS, Ahn S, Phillips AG, eds. Proceedings of the 12th International conference on in vivo methods monitoring molecules in neuroscience. Vancouver : University of Bristish Columbia, 2008 : 267–270. [Google Scholar]
- Dilly S, Lamy C, Liégeois JF, Seutin V. Combined experimental and computational approaches to study the action of blockers of small conductance calcium-activated potassium (SK) channels. Acta Physiol Scand 2010 ; suppl 678 : 0–10. [Google Scholar]
- Nolting A, Ferraro T, D’Hoedt D, Stocker M. An amino acid outside the pore region influences apamin sensitivity in small conductance Ca2+-activated K+ channels. J Biol Chem 2007 ; 282 : 3478–3486. [CrossRef] [PubMed] [Google Scholar]
- Goodchild SJ, Lamy C, Seutin V, Marrion NV. Inhibition of K(Ca)2.2 and K(Ca)2.3 channel currents by protonation of outer pore histidine residues. J Gen Physiol 2009 ; 134 : 295–308. [CrossRef] [PubMed] [Google Scholar]
- Seutin V. Régulation de l’activité des neurones monoaminergiques par des canaux ioniques : une opportunité pour de nouvelles approches thérapeutiques ? Bull Mem Acad R Med Belg 2008 ; 163 : 213–223. [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.