Free Access
Issue
Med Sci (Paris)
Volume 28, Number 2, Février 2012
Page(s) 200 - 205
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2012282019
Published online 27 February 2012
  1. Zhou Q, Yik JH. The Yin and Yang of P-TEFb regulation: implications for human immunodeficiency virus gene expression and global control of cell growth and differentiation. Microbiol Mol Biol Rev 2006 ; 70 : 646–659. [CrossRef] [PubMed] [Google Scholar]
  2. Nechaev S, Adelman K. Pol II waiting in the starting gates: regulating the transition from transcription initiation into productive elongation. Biochim Biophys Acta 2011 ; 1809 : 34–45. [PubMed] [Google Scholar]
  3. He N, Zhou Q. New insights into the control of HIV-1 transcription: when Tat meets the 7SK snRNP and super elongation complex (SEC). J Neuroimmune Pharmacol 2011 ; 6 : 260–268. [CrossRef] [PubMed] [Google Scholar]
  4. Nguyen VT, Kiss T, Michels AA, Bensaude O. 7SK small nuclear RNA binds to and inhibits the activity of CDK9/cyclin T complexes. Nature 2001 ; 414 : 322–325. [CrossRef] [PubMed] [Google Scholar]
  5. Yang Z, Zhu Q, Luo K, Zhou Q. The 7SK small nuclear RNA inhibits the CDK9/cyclin T1 kinase to control transcription. Nature 2001 ; 414 : 317–322. [CrossRef] [PubMed] [Google Scholar]
  6. Diribarne G, Bensaude O. 7SK RNA, a non-coding RNA regulating P-TEFb, a general transcription factor. RNA Biol 2009 ; 6 : 122–128. [CrossRef] [PubMed] [Google Scholar]
  7. He N, Jahchan NS, Hong E, et al. A La-related protein modulates 7SK snRNP integrity to suppress P-TEFb-dependent transcriptional elongation and tumorigenesis. Mol Cell 2008 ; 29 : 588–599. [CrossRef] [PubMed] [Google Scholar]
  8. Jeronimo C, Forget D, Bouchard A, et al. Systematic analysis of the protein interaction network for the human transcription machinery reveals the identity of the 7SK capping enzyme. Mol Cell 2007 ; 27 : 262–274. [CrossRef] [PubMed] [Google Scholar]
  9. Xue Y, Yang Z, Chen R, Zhou Q. A capping-independent function of MePCE in stabilizing 7SK snRNA and facilitating the assembly of 7SK snRNP. Nucleic Acids Res 2010 ; 38 : 360–369. [CrossRef] [PubMed] [Google Scholar]
  10. Egloff S, Van Herreweghe E, Kiss T. Regulation of polymerase II transcription by 7SK snRNA: two distinct RNA elements direct P-TEFb and HEXIM1 binding. Mol Cell Biol 2006 ; 26 : 630–642. [CrossRef] [PubMed] [Google Scholar]
  11. Michels AA, Fraldi A, Li Q, et al. Binding of the 7SK snRNA turns the HEXIM1 protein into a P-TEFb (CDK9/cyclin T) inhibitor. Embo J 2004 ; 23 : 2608–2619. [CrossRef] [PubMed] [Google Scholar]
  12. Barrandon C, Bonnet F, Nguyen VT, et al. The transcription-dependent dissociation of P-TEFb-HEXIM1–7SK RNA relies upon formation of hnRNP-7SK RNA complexes. Mol Cell Biol 2007 ; 27 : 6996–7006. [CrossRef] [PubMed] [Google Scholar]
  13. Van Herreweghe E, Egloff S, Goiffon I, et al. Dynamic remodelling of human 7SK snRNP controls the nuclear level of active P-TEFb. EMBO J 2007 ; 26 : 3570–3580. [CrossRef] [PubMed] [Google Scholar]
  14. Sano M, Schneider MD. Cyclin-dependent kinase-9: an RNAPII kinase at the nexus of cardiac growth and death cascades. Circ Res 2004 ; 95 : 867–876. [CrossRef] [PubMed] [Google Scholar]
  15. Dey A, Chao SH, Lane DP. HEXIM1 and the control of transcription elongation: from cancer and inflammation to AIDS and cardiac hypertrophy. Cell Cycle 2007 ; 6 : 1856–1863. [CrossRef] [PubMed] [Google Scholar]
  16. Cherrier T, Le Douce V, Redel L, et al. Un virus tapi dans l’ombre : les bases moléculaires de la latence du VIH-1. Partie II : la réactivation de la latence du VIH-1 et ses implications thérapeutiques. Med Sci (Paris) 2010 ; 26 : 291–295. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  17. Wang Y, Liu XY, De Clercq E. Role of the HIV-1 positive elongation factor P-TEFb and inhibitors thereof. Mini Rev Med Chem 2009 ; 9 : 379–385. [PubMed] [Google Scholar]
  18. He N, Liu M, Hsu J, et al. HIV-1 Tat and host AFF4 recruit two transcription elongation factors into a bifunctional complex for coordinated activation of HIV-1 transcription. Mol Cell 2010 ; 38 : 428–438. [CrossRef] [PubMed] [Google Scholar]
  19. Lin C, Smith ER, Takahashi H, et al. AFF4, a component of the ELL/P-TEFb elongation complex and a shared subunit of MLL chimeras, can link transcription elongation to leukemia. Mol Cell 2010 ; 37 : 429–437. [CrossRef] [PubMed] [Google Scholar]
  20. Sobhian B, Laguette N, Yatim A, et al. HIV-1 Tat assembles a multifunctional transcription elongation complex and stably associates with the 7SK snRNP. Mol Cell 2010 ; 38 : 439–451. [CrossRef] [PubMed] [Google Scholar]
  21. Flores O, Lee G, Kessler J, et al. Host-cell positive transcription elongation factor b kinase activity is essential and limiting for HIV type 1 replication. Proc Natl Acad Sci USA 1999 ; 96 : 7208–7213. [CrossRef] [Google Scholar]
  22. Tyagi M, Pearson RJ, Karn J. Establishment of HIV latency in primary CD4+ cells is due to epigenetic transcriptional silencing and P-TEFb restriction. J Virol 2010 ; 84 : 6425–6437. [CrossRef] [PubMed] [Google Scholar]
  23. Barboric M, Yik JH, Czudnochowski N, et al. Tat competes with HEXIM1 to increase the active pool of P-TEFb for HIV-1 transcription. Nucleic Acids Res 2007 ; 35 : 2003–2012. [CrossRef] [PubMed] [Google Scholar]
  24. Sedore SC, Byers SA, Biglione S, et al. Manipulation of P-TEFb control machinery by HIV: recruitment of P-TEFb from the large form by Tat and binding of HEXIM1 to TAR. Nucleic Acids Res 2007 ; 35 : 4347–4358. [CrossRef] [PubMed] [Google Scholar]
  25. Muniz L, Egloff S, Ughy B, et al. Controlling cellular P-TEFb activity by the HIV-1 transcriptional transactivator Tat. PLoS Pathog 2010 ; 6 : e1001152. [CrossRef] [PubMed] [Google Scholar]
  26. D’Orso I, Frankel AD. RNA-mediated displacement of an inhibitory snRNP complex activates transcription elongation. Nat Struct Mol Biol 2010 ; 17 : 815–821. [Google Scholar]
  27. Moiola C, De Luca P, Gardner K, et al. Cyclin T1 overexpression induces malignant transformation and tumor growth. Cell Cycle 2010 ; 9 : 3119–3126. [CrossRef] [PubMed] [Google Scholar]
  28. Ogba N, Chaplin LJ, Doughman YQ, et al. HEXIM1 regulates 17beta-estradiol/estrogen receptor-alpha-mediated expression of cyclin D1 in mammary cells via modulation of P-TEFb. Cancer Res 2008 ; 68 : 7015–7024. [CrossRef] [PubMed] [Google Scholar]
  29. Ketchart W, Ogba N, Kresak A, et al. HEXIM1 is a critical determinant of the response to tamoxifen. Oncogene 2011 ; 30 : 3563–3569. [CrossRef] [PubMed] [Google Scholar]
  30. Biewenga P, Buist MR, Moerland PD, et al. Gene expression in early stage cervical cancer. Gynecol Oncol 2008 ; 108 : 520–526. [CrossRef] [PubMed] [Google Scholar]
  31. Smith E, Lin C, Shilatifard A. The super elongation complex (SEC) and MLL in development and disease. Genes Dev 2011 ; 25 : 661–672. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.