Free Access
Issue
Med Sci (Paris)
Volume 28, Number 2, Février 2012
Page(s) 193 - 199
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2012282018
Published online 27 February 2012
  1. Camier S, Séraphin B. Détruisez ce message (ARN) après l’avoir lu ! Med Sci (Paris) 2007 ; 23 : 850–856. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  2. Mort M, Ivanov D, Cooper DN, Chuzhanova NA. A meta-analysis of nonsense mutations causing human genetic disease. Hum Mutat 2008 ; 29 : 1037–1047. [CrossRef] [PubMed] [Google Scholar]
  3. Rowe SM, Clancy JP. Pharmaceuticals targeting nonsense mutations in genetic diseases: progress in development. BioDrugs 2009 ; 23 : 165–174. [CrossRef] [PubMed] [Google Scholar]
  4. Keeling KM, Du M, Bedwell DM. Therapies of nonsense-associated diseases. In : Maquat L, ed. Nonse-mediated mRNA decay. Austin : Landes Bioscience, 2006 [Google Scholar]
  5. Burke JF, Mogg AE. Suppression of a nonsense mutation in mammalian cells in vivo by the aminoglycoside antibiotics G-418 and paromomycin. Nucleic Acids Res 1985 ; 13 : 6265–6272. [CrossRef] [PubMed] [Google Scholar]
  6. Howard M, Frizzell RA, Bedwell DM. Aminoglycoside antibiotics restore CFTR function by overcoming premature stop mutations. Nat Med 1996 ; 2 : 467–469. [CrossRef] [PubMed] [Google Scholar]
  7. Bedwell DM, Kaenjak A, Benos DJ, et al. Suppression of a CFTR premature stop mutation in a bronchial epithelial cell line. Nat Med 1997 ; 3 : 1280–1284. [CrossRef] [PubMed] [Google Scholar]
  8. Du M, Jones JR, Lanier J, et al. Aminoglycoside suppression of a premature stop mutation in a Cftr−/− mouse carrying a human CFTR-G542X transgene. J Mol Med 2002 ; 80 : 595–604. [CrossRef] [PubMed] [Google Scholar]
  9. Clancy JP, Bebok Z, Ruiz F, et al. Evidence that systemic gentamicin suppresses premature stop mutations in patients with cystic fibrosis. Am J Respir Crit Care Med 2001 ; 163 : 1683–1692. [PubMed] [Google Scholar]
  10. Wilschanski M, Famini C, Blau H, et al. A pilot study of the effect of gentamicin on nasal potential difference measurements in cystic fibrosis patients carrying stop mutations. Am J Respir Crit Care Med 2000 ; 161 : 860–865. [PubMed] [Google Scholar]
  11. Wilschanski M, Yahav Y, Yaacov Y, et al. Gentamicin-induced correction of CFTR function in patients with cystic fibrosis and CFTR stop mutations. N Engl J Med 2003 ; 349 : 1433–1441. [CrossRef] [PubMed] [Google Scholar]
  12. Sermet-Gaudelus I, Renouil M, Fajac A, et al. In vitro prediction of stop-codon suppression by intravenous gentamicin in patients with cystic fibrosis: a pilot study. BMC Med 2007 ; 5 : 5. [CrossRef] [PubMed] [Google Scholar]
  13. Barton-Davis ER, Cordier L, Shoturma DI, et al. Aminoglycoside antibiotics restore dystrophin function to skeletal muscles of mdx mice. J Clin Invest 1999 ; 104 : 375–381. [CrossRef] [PubMed] [Google Scholar]
  14. Dunant P, Walter MC, Karpati G, Lochmuller H.. Gentamicin fails to increase dystrophin expression in dystrophin-deficient muscle. Muscle Nerve 2003 ; 27 : 624–627. [Google Scholar]
  15. Wagner KR, Hamed S, Hadley DW, et al. Gentamicin treatment of Duchenne and Becker muscular dystrophy due to nonsense mutations. Ann Neurol 2001 ; 49 : 706–711. [CrossRef] [PubMed] [Google Scholar]
  16. Politano L, Nigro G, Nigro V, et al. Gentamicin administration in Duchenne patients with premature stop codon. Preliminary results. Acta Myol 2003 ; 22 : 15–21. [PubMed] [Google Scholar]
  17. Malik V, Rodino-Klapac LR, Viollet L, et al. Gentamicin-induced readthrough of stop codons in Duchenne muscular dystrophy. Ann Neurol 2010 ; 67 : 771–780. [PubMed] [Google Scholar]
  18. Zingman LV, Park S, Olson TM, et al. Aminoglycoside-induced translational read-through in disease: overcoming nonsense mutations by pharmacogenetic therapy. Clin Pharmacol Ther 2007 ; 81 : 99–103. [CrossRef] [PubMed] [Google Scholar]
  19. Linde L, Kerem B. Introducing sense into nonsense in treatments of human genetic diseases. Trends Genet 2008 ; 24 : 552–563. [CrossRef] [PubMed] [Google Scholar]
  20. Zilberberg A, Lahav L, Rosin-Arbesfeld R. Restoration of APC gene function in colorectal cancer cells by aminoglycoside- and macrolide-induced read-through of premature termination codons. Gut 2010 ; 59 : 496–507. [CrossRef] [PubMed] [Google Scholar]
  21. Floquet C, Deforges J, Rousset JP, Bidou L. Rescue of non-sense mutated p53 tumor suppressor gene by aminoglycosides. Nucleic Acids Res 2011 ; 39 : 3350–3362. [CrossRef] [PubMed] [Google Scholar]
  22. Floquet C, Rousset JP, Bidou L. Readthrough of premature termination codons in the adenomatous polyposis coli gene restores its biological activity in human cancer cells. PLoS One 2011 ; 6 : e24125. [CrossRef] [PubMed] [Google Scholar]
  23. Carter AP, Clemons WM, Brodersen DE, et al. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 2000 ; 407 : 340–348. [CrossRef] [PubMed] [Google Scholar]
  24. Mazzon E, Britti D, De Sarro A, et al. Effect of N-acetylcysteine on gentamicin-mediated nephropathy in rats. Eur J Pharmacol 2001 ; 424 : 75–83. [CrossRef] [PubMed] [Google Scholar]
  25. Du M, Keeling KM, Fan L, et al. Poly-L-aspartic acid enhances and prolongs gentamicin-mediated suppression of the CFTR-G542X mutation in a cystic fibrosis mouse model. J Biol Chem 2009 ; 284 : 6885–6892. [CrossRef] [PubMed] [Google Scholar]
  26. Mattis VB, Rai R, Wang J, et al. Novel aminoglycosides increase SMN levels in spinal muscular atrophy fibroblasts. Hum Genet 2006 ; 120 : 589–601. [CrossRef] [PubMed] [Google Scholar]
  27. Nudelman I, Rebibo-Sabbah A, Shallom-Shezifi D, et al. Redesign of aminoglycosides for treatment of human genetic diseases caused by premature stop mutations. Bioorg Med Chem Lett 2006 ; 16 : 6310–6315. [Google Scholar]
  28. Nudelman I, Glikin D, Smolkin B, et al. Repairing faulty genes by aminoglycosides: Development of new derivatives of geneticin (G418) with enhanced suppression of diseases-causing nonsense mutations. Bioorg Med Chem 2010 ; 18 : 3735–3746. [Google Scholar]
  29. Arakawa M, Shiozuka M, Nakayama Y, et al. Negamycin restores dystrophin expression in skeletal and cardiac muscles of mdx mice. J Biochem 2003 ; 134 : 751–758. [CrossRef] [PubMed] [Google Scholar]
  30. Schroeder SJ, Blaha G, Moore PB. Negamycin binds to the wall of the nascent chain exit tunnel of the 50S ribosomal subunit. Antimicrob Agents Chemother 2007 ; 51 : 4462–4465. [CrossRef] [PubMed] [Google Scholar]
  31. Du L, Damoiseaux R, Nahas S, et al. Nonaminoglycoside compounds induce readthrough of nonsense mutations. J Exp Med 2009 ; 206 : 2285–2297. [CrossRef] [PubMed] [Google Scholar]
  32. Welch EM, Barton ER, Zhuo J, et al. PTC124 targets genetic disorders caused by nonsense mutations. Nature 2007 ; 447 : 87–91. [CrossRef] [PubMed] [Google Scholar]
  33. Sermet-Gaudelus I, Boeck KD, Casimir GJ, et al. Ataluren (PTC124) induces cystic fibrosis transmembrane conductance regulator protein expression and activity in children with nonsense mutation cystic fibrosis. Am J Respir Crit Care Med 2010 ; 182 : 1262–1272. [CrossRef] [PubMed] [Google Scholar]
  34. Bidou L, Hatin I, Perez N, et al. Premature stop codons involved in muscular dystrophies show a broad spectrum of readthrough efficiencies in response to gentamicin treatment. Gene Ther 2004 ; 11 : 619–627. [CrossRef] [PubMed] [Google Scholar]
  35. Manuvakhova M, Keeling K, Bedwell DM. Aminoglycoside antibiotics mediate context-dependent suppression of termination codons in a mammalian translation system. RNA 2000 ; 6 : 1044–1055. [CrossRef] [PubMed] [Google Scholar]
  36. Cassan M, Rousset JP. UAG readthrough in mammalian cells: effect of upstream and downstream stop codon contexts reveal different signals. BMC Mol Biol 2001 ; 2 : 3. [CrossRef] [PubMed] [Google Scholar]
  37. Linde L, Boelz S, Neu-Yilik G, et al. The efficiency of nonsense-mediated mRNA decay is an inherent character and varies among different cells. Eur J Hum Genet 2007 ; 15 : 1156–1162. [CrossRef] [PubMed] [Google Scholar]
  38. Linde L, Boelz S, Nissim-Rafinia M, et al. Nonsense-mediated mRNA decay affects nonsense transcript levels and governs response of cystic fibrosis patients to gentamicin. J Clin Invest 2007 ; 117 : 683–692. [CrossRef] [PubMed] [Google Scholar]
  39. Allamand V, Bidou L, Arakawa M, et al. Drug-induced readthrough of premature stop codons leads to the stabilization of laminin alpha2 chain mRNA in CMD myotubes. J Gene Med 2008 ; 10 : 217–224. [CrossRef] [PubMed] [Google Scholar]
  40. Hogg JR, Goff SP. Upf1 senses 3’UTR length to potentiate mRNA decay. Cell 2010 ; 143 : 379–389. [CrossRef] [PubMed] [Google Scholar]
  41. Feng YX, Copeland TD, Oroszlan S, et al. Identification of amino acids inserted during suppression of UAA and UGA termination codons at the gag-pol junction of Moloney murine leukemia virus. Proc Natl Acad Sci USA 1990 ; 87 : 8860–8863. [CrossRef] [Google Scholar]
  42. Stansfield I, Jones KM, Herbert P, et al. Missense translation errors in Saccharomyces cerevisiae. J Mol Biol 1998 ; 282 : 13–24. [CrossRef] [PubMed] [Google Scholar]
  43. Salas-Marco J, Bedwell DM. Discrimination between defects in elongation fidelity and termination efficiency provides mechanistic insights into translational readthrough. J Mol Biol 2005 ; 348 : 801–815. [CrossRef] [PubMed] [Google Scholar]
  44. Leporé N, Lafontaine DL. « Attrape-moi si tu peux » - Surveillance de l’intégrité structurale et fonctionnelle des ARN cellulaires eucaryotes. Med Sci (Paris) 2010 ; 26 : 259–266. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  45. Kaplan JC. Lost after translation. Med Sci (Paris) 2008 ; 24 : 912–915. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  46. Floquet C, Rousset JP, Bidou L. La réactivation par translecture du gène p53 possédant une mutation non-sens induit l’apoptose de cellules cancéreuses. Med Sci (Paris) 2011 ; 27 : 585–586. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  47. Verroust PJ, Kozyraki R. Cubiline : rôle physiopathologique et relations avec la mégaline. Med Sci (Paris) 2003 ; 19 : 337–343. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  48. Ben-Shem A. Garreau de Loubresse N, Melnikov S, et al. The structure of the eukaryotic ribosome at 3.0 Å resolution. Science 2011 ; 334 : 1524–1529. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.