Accès gratuit
Numéro
Med Sci (Paris)
Volume 28, Numéro 2, Février 2012
Page(s) 193 - 199
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2012282018
Publié en ligne 27 février 2012
  1. Camier S, Séraphin B. Détruisez ce message (ARN) après l’avoir lu ! Med Sci (Paris) 2007 ; 23 : 850–856. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  2. Mort M, Ivanov D, Cooper DN, Chuzhanova NA. A meta-analysis of nonsense mutations causing human genetic disease. Hum Mutat 2008 ; 29 : 1037–1047. [CrossRef] [PubMed] [Google Scholar]
  3. Rowe SM, Clancy JP. Pharmaceuticals targeting nonsense mutations in genetic diseases: progress in development. BioDrugs 2009 ; 23 : 165–174. [CrossRef] [PubMed] [Google Scholar]
  4. Keeling KM, Du M, Bedwell DM. Therapies of nonsense-associated diseases. In : Maquat L, ed. Nonse-mediated mRNA decay. Austin : Landes Bioscience, 2006 [Google Scholar]
  5. Burke JF, Mogg AE. Suppression of a nonsense mutation in mammalian cells in vivo by the aminoglycoside antibiotics G-418 and paromomycin. Nucleic Acids Res 1985 ; 13 : 6265–6272. [CrossRef] [PubMed] [Google Scholar]
  6. Howard M, Frizzell RA, Bedwell DM. Aminoglycoside antibiotics restore CFTR function by overcoming premature stop mutations. Nat Med 1996 ; 2 : 467–469. [CrossRef] [PubMed] [Google Scholar]
  7. Bedwell DM, Kaenjak A, Benos DJ, et al. Suppression of a CFTR premature stop mutation in a bronchial epithelial cell line. Nat Med 1997 ; 3 : 1280–1284. [CrossRef] [PubMed] [Google Scholar]
  8. Du M, Jones JR, Lanier J, et al. Aminoglycoside suppression of a premature stop mutation in a Cftr−/− mouse carrying a human CFTR-G542X transgene. J Mol Med 2002 ; 80 : 595–604. [CrossRef] [PubMed] [Google Scholar]
  9. Clancy JP, Bebok Z, Ruiz F, et al. Evidence that systemic gentamicin suppresses premature stop mutations in patients with cystic fibrosis. Am J Respir Crit Care Med 2001 ; 163 : 1683–1692. [PubMed] [Google Scholar]
  10. Wilschanski M, Famini C, Blau H, et al. A pilot study of the effect of gentamicin on nasal potential difference measurements in cystic fibrosis patients carrying stop mutations. Am J Respir Crit Care Med 2000 ; 161 : 860–865. [PubMed] [Google Scholar]
  11. Wilschanski M, Yahav Y, Yaacov Y, et al. Gentamicin-induced correction of CFTR function in patients with cystic fibrosis and CFTR stop mutations. N Engl J Med 2003 ; 349 : 1433–1441. [CrossRef] [PubMed] [Google Scholar]
  12. Sermet-Gaudelus I, Renouil M, Fajac A, et al. In vitro prediction of stop-codon suppression by intravenous gentamicin in patients with cystic fibrosis: a pilot study. BMC Med 2007 ; 5 : 5. [CrossRef] [PubMed] [Google Scholar]
  13. Barton-Davis ER, Cordier L, Shoturma DI, et al. Aminoglycoside antibiotics restore dystrophin function to skeletal muscles of mdx mice. J Clin Invest 1999 ; 104 : 375–381. [CrossRef] [PubMed] [Google Scholar]
  14. Dunant P, Walter MC, Karpati G, Lochmuller H.. Gentamicin fails to increase dystrophin expression in dystrophin-deficient muscle. Muscle Nerve 2003 ; 27 : 624–627. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  15. Wagner KR, Hamed S, Hadley DW, et al. Gentamicin treatment of Duchenne and Becker muscular dystrophy due to nonsense mutations. Ann Neurol 2001 ; 49 : 706–711. [CrossRef] [PubMed] [Google Scholar]
  16. Politano L, Nigro G, Nigro V, et al. Gentamicin administration in Duchenne patients with premature stop codon. Preliminary results. Acta Myol 2003 ; 22 : 15–21. [PubMed] [Google Scholar]
  17. Malik V, Rodino-Klapac LR, Viollet L, et al. Gentamicin-induced readthrough of stop codons in Duchenne muscular dystrophy. Ann Neurol 2010 ; 67 : 771–780. [PubMed] [Google Scholar]
  18. Zingman LV, Park S, Olson TM, et al. Aminoglycoside-induced translational read-through in disease: overcoming nonsense mutations by pharmacogenetic therapy. Clin Pharmacol Ther 2007 ; 81 : 99–103. [CrossRef] [PubMed] [Google Scholar]
  19. Linde L, Kerem B. Introducing sense into nonsense in treatments of human genetic diseases. Trends Genet 2008 ; 24 : 552–563. [CrossRef] [PubMed] [Google Scholar]
  20. Zilberberg A, Lahav L, Rosin-Arbesfeld R. Restoration of APC gene function in colorectal cancer cells by aminoglycoside- and macrolide-induced read-through of premature termination codons. Gut 2010 ; 59 : 496–507. [CrossRef] [PubMed] [Google Scholar]
  21. Floquet C, Deforges J, Rousset JP, Bidou L. Rescue of non-sense mutated p53 tumor suppressor gene by aminoglycosides. Nucleic Acids Res 2011 ; 39 : 3350–3362. [CrossRef] [PubMed] [Google Scholar]
  22. Floquet C, Rousset JP, Bidou L. Readthrough of premature termination codons in the adenomatous polyposis coli gene restores its biological activity in human cancer cells. PLoS One 2011 ; 6 : e24125. [CrossRef] [PubMed] [Google Scholar]
  23. Carter AP, Clemons WM, Brodersen DE, et al. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 2000 ; 407 : 340–348. [CrossRef] [PubMed] [Google Scholar]
  24. Mazzon E, Britti D, De Sarro A, et al. Effect of N-acetylcysteine on gentamicin-mediated nephropathy in rats. Eur J Pharmacol 2001 ; 424 : 75–83. [CrossRef] [PubMed] [Google Scholar]
  25. Du M, Keeling KM, Fan L, et al. Poly-L-aspartic acid enhances and prolongs gentamicin-mediated suppression of the CFTR-G542X mutation in a cystic fibrosis mouse model. J Biol Chem 2009 ; 284 : 6885–6892. [CrossRef] [PubMed] [Google Scholar]
  26. Mattis VB, Rai R, Wang J, et al. Novel aminoglycosides increase SMN levels in spinal muscular atrophy fibroblasts. Hum Genet 2006 ; 120 : 589–601. [CrossRef] [PubMed] [Google Scholar]
  27. Nudelman I, Rebibo-Sabbah A, Shallom-Shezifi D, et al. Redesign of aminoglycosides for treatment of human genetic diseases caused by premature stop mutations. Bioorg Med Chem Lett 2006 ; 16 : 6310–6315. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  28. Nudelman I, Glikin D, Smolkin B, et al. Repairing faulty genes by aminoglycosides: Development of new derivatives of geneticin (G418) with enhanced suppression of diseases-causing nonsense mutations. Bioorg Med Chem 2010 ; 18 : 3735–3746. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  29. Arakawa M, Shiozuka M, Nakayama Y, et al. Negamycin restores dystrophin expression in skeletal and cardiac muscles of mdx mice. J Biochem 2003 ; 134 : 751–758. [CrossRef] [PubMed] [Google Scholar]
  30. Schroeder SJ, Blaha G, Moore PB. Negamycin binds to the wall of the nascent chain exit tunnel of the 50S ribosomal subunit. Antimicrob Agents Chemother 2007 ; 51 : 4462–4465. [CrossRef] [PubMed] [Google Scholar]
  31. Du L, Damoiseaux R, Nahas S, et al. Nonaminoglycoside compounds induce readthrough of nonsense mutations. J Exp Med 2009 ; 206 : 2285–2297. [CrossRef] [PubMed] [Google Scholar]
  32. Welch EM, Barton ER, Zhuo J, et al. PTC124 targets genetic disorders caused by nonsense mutations. Nature 2007 ; 447 : 87–91. [CrossRef] [PubMed] [Google Scholar]
  33. Sermet-Gaudelus I, Boeck KD, Casimir GJ, et al. Ataluren (PTC124) induces cystic fibrosis transmembrane conductance regulator protein expression and activity in children with nonsense mutation cystic fibrosis. Am J Respir Crit Care Med 2010 ; 182 : 1262–1272. [CrossRef] [PubMed] [Google Scholar]
  34. Bidou L, Hatin I, Perez N, et al. Premature stop codons involved in muscular dystrophies show a broad spectrum of readthrough efficiencies in response to gentamicin treatment. Gene Ther 2004 ; 11 : 619–627. [CrossRef] [PubMed] [Google Scholar]
  35. Manuvakhova M, Keeling K, Bedwell DM. Aminoglycoside antibiotics mediate context-dependent suppression of termination codons in a mammalian translation system. RNA 2000 ; 6 : 1044–1055. [CrossRef] [PubMed] [Google Scholar]
  36. Cassan M, Rousset JP. UAG readthrough in mammalian cells: effect of upstream and downstream stop codon contexts reveal different signals. BMC Mol Biol 2001 ; 2 : 3. [CrossRef] [PubMed] [Google Scholar]
  37. Linde L, Boelz S, Neu-Yilik G, et al. The efficiency of nonsense-mediated mRNA decay is an inherent character and varies among different cells. Eur J Hum Genet 2007 ; 15 : 1156–1162. [CrossRef] [PubMed] [Google Scholar]
  38. Linde L, Boelz S, Nissim-Rafinia M, et al. Nonsense-mediated mRNA decay affects nonsense transcript levels and governs response of cystic fibrosis patients to gentamicin. J Clin Invest 2007 ; 117 : 683–692. [CrossRef] [PubMed] [Google Scholar]
  39. Allamand V, Bidou L, Arakawa M, et al. Drug-induced readthrough of premature stop codons leads to the stabilization of laminin alpha2 chain mRNA in CMD myotubes. J Gene Med 2008 ; 10 : 217–224. [CrossRef] [PubMed] [Google Scholar]
  40. Hogg JR, Goff SP. Upf1 senses 3’UTR length to potentiate mRNA decay. Cell 2010 ; 143 : 379–389. [CrossRef] [PubMed] [Google Scholar]
  41. Feng YX, Copeland TD, Oroszlan S, et al. Identification of amino acids inserted during suppression of UAA and UGA termination codons at the gag-pol junction of Moloney murine leukemia virus. Proc Natl Acad Sci USA 1990 ; 87 : 8860–8863. [CrossRef] [Google Scholar]
  42. Stansfield I, Jones KM, Herbert P, et al. Missense translation errors in Saccharomyces cerevisiae. J Mol Biol 1998 ; 282 : 13–24. [CrossRef] [PubMed] [Google Scholar]
  43. Salas-Marco J, Bedwell DM. Discrimination between defects in elongation fidelity and termination efficiency provides mechanistic insights into translational readthrough. J Mol Biol 2005 ; 348 : 801–815. [CrossRef] [PubMed] [Google Scholar]
  44. Leporé N, Lafontaine DL. « Attrape-moi si tu peux » - Surveillance de l’intégrité structurale et fonctionnelle des ARN cellulaires eucaryotes. Med Sci (Paris) 2010 ; 26 : 259–266. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  45. Kaplan JC. Lost after translation. Med Sci (Paris) 2008 ; 24 : 912–915. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  46. Floquet C, Rousset JP, Bidou L. La réactivation par translecture du gène p53 possédant une mutation non-sens induit l’apoptose de cellules cancéreuses. Med Sci (Paris) 2011 ; 27 : 585–586. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  47. Verroust PJ, Kozyraki R. Cubiline : rôle physiopathologique et relations avec la mégaline. Med Sci (Paris) 2003 ; 19 : 337–343. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  48. Ben-Shem A. Garreau de Loubresse N, Melnikov S, et al. The structure of the eukaryotic ribosome at 3.0 Å resolution. Science 2011 ; 334 : 1524–1529. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.