Free Access
Med Sci (Paris)
Volume 28, Number 2, Février 2012
Page(s) 185 - 192
Section M/S Revues
Published online 27 February 2012
  1. Williams TM, Carroll SB. Genetic and molecular insights into the development and evolution of sexual dimorphism. Nat Rev Genet 2009 ; 10 : 797–804. [CrossRef] [PubMed] [Google Scholar]
  2. McCarthy MM, Arnold AP. Reframing sexual differentiation of the brain. Nat Neurosci 2011 ; 14 : 677–683. [CrossRef] [PubMed] [Google Scholar]
  3. Sax L. How common is intersex? a response to Anne Fausto-Sterling. J Sex Res 2002 ; 39 : 174–178. [CrossRef] [PubMed] [Google Scholar]
  4. Gabory A, Attig L, Junien C. Sexual dimorphism in environmental epigenetic programming. Mol Cell Endocrinol 2009 ; 25 : 8–18. [CrossRef] [Google Scholar]
  5. Arnold AP. Promoting the understanding of sex differences to enhance equity and aexcellence in biomedical science. Biol Sex Differ 2011 ; 1 : 1. [CrossRef] [Google Scholar]
  6. Burgoyne PS, Thornhill AR, Boudrean SK, et al. The genetic basis of XX-XY differences present before gonadal sex differentiation in the mouse. Philos Trans R Soc Lond B Biol Sci 1995 ; 350 : 253–261. [CrossRef] [PubMed] [Google Scholar]
  7. Ceribelli A, Pino MS, Cecere FL. Gender differences : implications for clinical trials and practice. J Thorac Oncol 2007 ; 2 : S15–S18. [CrossRef] [PubMed] [Google Scholar]
  8. Davies W, Wilkinson LS. It is not all hormones : alternative explanations for sexual differentiation of the brain. Brain Res 2006 ; 1126 : 36–45. [CrossRef] [PubMed] [Google Scholar]
  9. Bermejo-Alvarez P, Rizos D, Rath D, et al. Sex determines the expression level of one third of the actively expressed genes in bovine blastocysts. Proc Natl Acad Sci USA 2010 ; 107 : 3394–3399. [CrossRef] [Google Scholar]
  10. Kobayashi S, Isotani A, Mise N, et al. Comparison of gene expression in male and female mouse blastocysts revealed imprinting of the X-linked gene, Rhox5/Pem, at preimplantation stages. Curr Biol 2006 ; 16 : 166–172. [CrossRef] [PubMed] [Google Scholar]
  11. Bermejo-Alvarez P, Rizos D, Lonergan P, Gutierrez-Adan A. Transcriptional sexual dimorphism during preimplantation embryo development and its consequences for developmental competence and adult health and disease. Reproduction 2011 ; 141 : 563–570. [CrossRef] [PubMed] [Google Scholar]
  12. Penaloza C, Estevez B, Orlanski S, et al. Sex of the cell dictates its response : differential gene expression and sensitivity to cell death inducing stress in male and female cells. FASEB J 2009 ; 23 : 1869–1879. [CrossRef] [PubMed] [Google Scholar]
  13. Dewing P, Shi T, Horvath S, Vilain E. Sexually dimorphic gene expression in mouse brain precedes gonadal differentiation. Brain Res Mol Brain Res 2003 ; 118 : 82–90. [CrossRef] [PubMed] [Google Scholar]
  14. Clifton VL. Sex the human placenta : mediating differential strategies of fetal growth and survival. Placenta 2010 ; 31 (suppl) : S33–S39. [CrossRef] [PubMed] [Google Scholar]
  15. Sood R, Zehnder JL, Druzin ML, Brown PO. Gene expression patterns in human placenta. Proc Natl Acad Sci USA 2006 ; 103 : 5478–5483. [CrossRef] [Google Scholar]
  16. Mao J, Zhang X, Sieli PT, et al. Contrasting effects of different maternal diets on sexually dimorphic gene expression in the murine placenta. Proc Natl Acad Sci USA 2010 ; 107 : 557–562. [Google Scholar]
  17. Gallou-Kabani C, Gabory A, Tost J, et al. Sex-and diet-specific changes of imprinted ggene expression and DNA methylation in mouse placenta under a high-fat diet. PLoS One 2010 ; 5 : e14398. [CrossRef] [PubMed] [Google Scholar]
  18. Gabory A, Ferry L, Fajardy I, et al. Female- and male-specific transcriptomic and epigenetic placental signatures in response to a maternal high-fat diet in mice. 2012 (soumis pour publication). [Google Scholar]
  19. Forger NG. Control of cell number in the sexually dimorphic brain and spinal cord. J Neuroendocrinol 2009 ; 21 : 393–399. [CrossRef] [PubMed] [Google Scholar]
  20. Cahill L. Why sex matters for neuroscience. Nat Rev Neurosci 2006 ; 7 : 477–484. [CrossRef] [PubMed] [Google Scholar]
  21. Moore CL, Power KL. Variation in maternal care and individual differences in play, exploration, and grooming of juvenile Norway rat offspring. Dev Psychobiol 1992 ; 25 : 165–182. [CrossRef] [PubMed] [Google Scholar]
  22. McGowan PO, Sasaki A, D’Alessio AC, et al. Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci 2009 ; 12 : 342–348. [CrossRef] [PubMed] [Google Scholar]
  23. Curley JP, Jensen CL, Mashoodh R, Champagne FA. Social influences on neurobiology and behavior : Epigenetic effects during development. Psychoneuroendocrinology 2010 ; 36 : 352–357. [CrossRef] [PubMed] [Google Scholar]
  24. Yang X, Schadt EE, Wang S, et al. Tissue-specific expression and regulation of sexually dimorphic genes in mice. Genome Res 2006 ; 16 : 995–1004. [CrossRef] [PubMed] [Google Scholar]
  25. Van Nas A, Guhathakurta D, Wang SS, et al. Elucidating the role of gonadal hormones in sexually dimorphic gene coexpression networks. Endocrinology 2009 ; 150 : 1235–1249. [CrossRef] [PubMed] [Google Scholar]
  26. Wauthier V, Sugathan A, Meyer RD, et al. Intrinsic sex differences in the early growth hormone responsiveness of sex-specific genes in mouse liver. Mol Endocrinol 2010 ; 24 : 667–678. [CrossRef] [PubMed] [Google Scholar]
  27. Waxman DJ, Holloway MG. Centennial perspective : sex differences in the expression of hepatic drug metabolizing enzymes. Mol Pharmacol 2009 ; 76 : 215–228. [CrossRef] [PubMed] [Google Scholar]
  28. Bourc’his D, Proudhon C. Sexual dimorphism in parental imprint ontogeny and contribution to embryonic development. Mol Cell Endocrinol 2008 ; 282 : 87–94. [CrossRef] [PubMed] [Google Scholar]
  29. Kaminsky Z, Wang SC, Petronis A. Complex disease, gender and epigenetics. Ann Med 2006 ; 38 : 530–544. [CrossRef] [PubMed] [Google Scholar]
  30. Csoka AB, Szyf M. Epigenetic side-effects of common pharmaceuticals : a potential new field in medicine and pharmacology. Med Hypotheses 2009 ; 73 : 770–780. [CrossRef] [PubMed] [Google Scholar]
  31. Gabory A, Attig L, Junien C. Developmental programming and epigenetics. Am J Clin Nutr 2011 ; 94 (suppl 6) : S1943–S1952. [Google Scholar]
  32. Bermejo-Alvarez P, Rizos D, Rath D, et al. Epigenetic differences between male and female bovine blastocysts produced in vitro. Physiol Genomics 2008 ; 32 : 264–272. [PubMed] [Google Scholar]
  33. McCarthy MM, Auger AP, Bale TL, et al. The epigenetics of sex differences in the brain. J Neurosci 2009 ; 29 : 12815–12823. [CrossRef] [PubMed] [Google Scholar]
  34. Jessen HM, Auger AP. Sex differences in epigenetic mechanisms may underlie risk and resilience for mental health disorders. Epigenetics 2011 ; 6 : 857–861. [CrossRef] [PubMed] [Google Scholar]
  35. Tsai HW, Grant PA, Rissman EF. Sex differences in histone modifications in the neonatal mouse brain. Epigenetics 2009 ; 4 : 47–53. [CrossRef] [PubMed] [Google Scholar]
  36. Ling G, Sugathan A, Mazor T, et al. Unbiased, genome-wide in vivo mapping of transcriptional regulatory elements reveals sex differences in chromatin structure associated with sex-specific liver gene expression. Mol Cell Biol 2010 ; 30 : 5531–5544. [CrossRef] [PubMed] [Google Scholar]
  37. Fauquier L. Quand l’environnement du père influence l’expression génique chez l’enfant. Med Sci (Paris) 2011 ; 27 : 453–455. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  38. Pennisi E. Sex and Social Structure. Science 2009 ; 326 : 518–519. [CrossRef] [PubMed] [Google Scholar]
  39. Shepard KN, Michopoulos V, Toufexis DJ, Wilson ME. Genetic, epigenetic and environmental impact on sex differences in social behavior. Physiol Behav 2009 ; 97 : 157–170. [Google Scholar]
  40. Schlessinger D, Garcia-Ortiz JE, Forabosco A, et al. Determination and stability of gonadal sex. J Androl 2011 ; 31 : 16–25. [CrossRef] [Google Scholar]
  41. Dunn GA, Morgan CP, Bale TL. Sex-specificity in transgenerational epigenetic programming. Horm Behav 2010 ; 59 : 290–295. [CrossRef] [PubMed] [Google Scholar]
  42. Nosten F. Paludisme et grossesse : un dilemme thérapeutique. Med Sci (Paris) 2009 ; 25 : 867–869. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.