Free Access
Med Sci (Paris)
Volume 28, Number 2, Février 2012
Page(s) 179 - 184
Section M/S Revues
Published online 27 February 2012
  1. Tremolieres F. Quand le miracle antibiotique vire au cauchemar. Med Sci (Paris) 2010 ; 26 : 925–929. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  2. Nordmann P. Résistance aux carbapénèmes chez les bacilles à Gram négatif. Med Sci (Paris) 2010 ; 26 : 950–959. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  3. Guillemot D. Antibiotic use in humans and bacterial resistance. Curr Opin Microbiol 1999 ; 2 : 494–498. [CrossRef] [PubMed] [Google Scholar]
  4. Depardieu F, Podglajen I, Leclercq R, et al. Modes and modulations of antibiotic resistance gene expression. Clin Microbiol Rev 2007 ; 20 : 79–114. [CrossRef] [PubMed] [Google Scholar]
  5. Courvalin P, Trieu-Cuot P. Minimizing potential resistance: the molecular view. Clin Infect Dis 2001 ; 33 (suppl 3) : S138–S146. [CrossRef] [PubMed] [Google Scholar]
  6. Erill I, Campoy S, Barbe J. Aeons of distress: an evolutionary perspective on the bacterial SOS response. FEMS Microbiol Rev 2007 ; 31 : 637–656. [CrossRef] [PubMed] [Google Scholar]
  7. Kelley WL. Lex marks the spot: the virulent side of SOS and a closer look at the LexA regulon. Mol Microbiol 2006 ; 62 : 1228–1238. [CrossRef] [PubMed] [Google Scholar]
  8. Friedman N, Vardi S, Ronen M, et al. Precise temporal modulation in the response of the SOS DNA repair network in individual bacteria. PLoS Biol 2005 ; 3 : e238. [Google Scholar]
  9. Friedberg EC, Walker GC, Siede W, et al. DNA repair and mutagenesis. Washington DC: American society of Microbiology Press, 2006. [Google Scholar]
  10. Shaw KJ, Miller N, Liu X, et al. Comparison of the changes in global gene expression of Escherichia coli induced by four bactericidal agents. J Mol Microbiol Biotechnol 2003 ; 5 : 105–122. [CrossRef] [PubMed] [Google Scholar]
  11. Baharoglu Z, Mazel D. Vibrio cholerae triggers SOS and mutagenesis in response to a wide range of antibiotics, a route towards multi-resistance. Antimicrob Agents Chemother 2011 ; 55 : 2438–2441. [CrossRef] [PubMed] [Google Scholar]
  12. Nanduri B, Shack LA, Burgess SC, Lawrence ML. The transcriptional response of Pasteurella multocida to three classes of antibiotics. BMC Genomics 2009 ; 10 (suppl 2) : S4. [CrossRef] [Google Scholar]
  13. Kohanski MA, DePristo MA, Collins JJ. Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. Mol Cell 2010 ; 37 : 311–320. [CrossRef] [PubMed] [Google Scholar]
  14. Gillespie SH, Basu S, Dickens AL, et al. Effect of subinhibitory concentrations of ciprofloxacin on Mycobacterium fortuitum mutation rates. J Antimicrob Chemother 2005 ; 56 : 344–348. [CrossRef] [PubMed] [Google Scholar]
  15. Jacoby GA. Mechanisms of resistance to quinolones. Clin Infect Dis 2005 ; 41 (suppl 2) : S120–S126. [CrossRef] [PubMed] [Google Scholar]
  16. Rodriguez-Martinez JM, Cano ME, Velasco C, et al. Plasmid-mediated quinolone resistance: an update. J Infect Chemother 2011 ; 17 : 149–182. [CrossRef] [PubMed] [Google Scholar]
  17. Da Re S, Garnier F, Guerin E, et al. The SOS response promotes qnrB quinolone-resistance determinant expression. EMBO Rep 2009 ; 10 : 929–933. [CrossRef] [PubMed] [Google Scholar]
  18. Cambray G, Guerout AM, Mazel D. Integrons. Annu Rev Genet 2010 ; 44 : 141–166. [CrossRef] [PubMed] [Google Scholar]
  19. Guerin E, Cambray G, Sanchez-Alberola N, et al. The SOS response controls integron recombination. Science 2009 ; 324 : 1034. [CrossRef] [PubMed] [Google Scholar]
  20. Hocquet D, Llanes C, Thouverez M, et al. A Pseudomonas aeruginosa clinical isolate with antibiotic resistance promoted by the SOS response in a patient. ASM 111th general meeting. New Orleans, Louisiana, 2001. [Google Scholar]
  21. Beaber JW, Hochhut B, Waldor MK. SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature 2004 ; 427 : 72–74. [CrossRef] [PubMed] [Google Scholar]
  22. Baharoglu Z, Bikard D, Mazel D. Conjugative DND transfer induces the bacterial SOS response, promotes antibiotic resistance development through integron activation. PLoS Genet 2010 ; 6 : e1001165. [CrossRef] [PubMed] [Google Scholar]
  23. Baharoglu Z, Krin E, Mazel D. Transformation-induced SOS regulation and carbon catabolite control of the V. cholerae integron integrase: connecting environment and genome plasticity. J Bacteriol 2012 (sous presse). [Google Scholar]
  24. Lewis K. Persister cells. Annu Rev Microbiol 2010 ; 64 : 357–372. [CrossRef] [PubMed] [Google Scholar]
  25. Dorr T, Vulic M, Lewis K. Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biol 2010 ; 8 : e1000317. [CrossRef] [PubMed] [Google Scholar]
  26. Linares JF, Gustafsson I, Baquero F, Martinez JL. Antibiotics as intermicrobial signaling agents instead of weapons. Proc Natl Acad Sci USA 2006 ; 103 : 19484–19489. [CrossRef] [Google Scholar]
  27. Kalan L, Wright GD. Antibiotic adjuvants: multicomponent anti-infective strategies. Expert Rev Mol Med 2011 ; 13 : e5. [CrossRef] [PubMed] [Google Scholar]
  28. Cirz RT, Chin JK, Andes DR, et al. Inhibition of mutation combating the evolution of antibiotic resistance. PLoS Biol 2005 ; 3 : e176. [CrossRef] [PubMed] [Google Scholar]
  29. Lu TK, Collins JJ. Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proc Natl Acad Sci USA 2009 ; 106 : 4629–4634. [CrossRef] [Google Scholar]
  30. Sexton JZ, Wigle TJ, He Q, et al. Novel Inhibitors of E. coli RecA ATPase Activity. Curr Chem Genomics 2010 ; 4 : 34–42. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.