Accès gratuit
Numéro
Med Sci (Paris)
Volume 28, Numéro 2, Février 2012
Page(s) 179 - 184
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2012282016
Publié en ligne 27 février 2012
  1. Tremolieres F. Quand le miracle antibiotique vire au cauchemar. Med Sci (Paris) 2010 ; 26 : 925–929. [CrossRef] [EDP Sciences] [PubMed]
  2. Nordmann P. Résistance aux carbapénèmes chez les bacilles à Gram négatif. Med Sci (Paris) 2010 ; 26 : 950–959. [CrossRef] [EDP Sciences] [PubMed]
  3. Guillemot D. Antibiotic use in humans and bacterial resistance. Curr Opin Microbiol 1999 ; 2 : 494–498. [CrossRef] [PubMed]
  4. Depardieu F, Podglajen I, Leclercq R, et al. Modes and modulations of antibiotic resistance gene expression. Clin Microbiol Rev 2007 ; 20 : 79–114. [CrossRef] [PubMed]
  5. Courvalin P, Trieu-Cuot P. Minimizing potential resistance: the molecular view. Clin Infect Dis 2001 ; 33 (suppl 3) : S138–S146. [CrossRef] [PubMed]
  6. Erill I, Campoy S, Barbe J. Aeons of distress: an evolutionary perspective on the bacterial SOS response. FEMS Microbiol Rev 2007 ; 31 : 637–656. [CrossRef] [PubMed]
  7. Kelley WL. Lex marks the spot: the virulent side of SOS and a closer look at the LexA regulon. Mol Microbiol 2006 ; 62 : 1228–1238. [CrossRef] [PubMed]
  8. Friedman N, Vardi S, Ronen M, et al. Precise temporal modulation in the response of the SOS DNA repair network in individual bacteria. PLoS Biol 2005 ; 3 : e238. [CrossRef] [PubMed]
  9. Friedberg EC, Walker GC, Siede W, et al. DNA repair and mutagenesis. Washington DC: American society of Microbiology Press, 2006.
  10. Shaw KJ, Miller N, Liu X, et al. Comparison of the changes in global gene expression of Escherichia coli induced by four bactericidal agents. J Mol Microbiol Biotechnol 2003 ; 5 : 105–122. [CrossRef] [PubMed]
  11. Baharoglu Z, Mazel D. Vibrio cholerae triggers SOS and mutagenesis in response to a wide range of antibiotics, a route towards multi-resistance. Antimicrob Agents Chemother 2011 ; 55 : 2438–2441. [CrossRef] [PubMed]
  12. Nanduri B, Shack LA, Burgess SC, Lawrence ML. The transcriptional response of Pasteurella multocida to three classes of antibiotics. BMC Genomics 2009 ; 10 (suppl 2) : S4. [CrossRef]
  13. Kohanski MA, DePristo MA, Collins JJ. Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. Mol Cell 2010 ; 37 : 311–320. [CrossRef] [PubMed]
  14. Gillespie SH, Basu S, Dickens AL, et al. Effect of subinhibitory concentrations of ciprofloxacin on Mycobacterium fortuitum mutation rates. J Antimicrob Chemother 2005 ; 56 : 344–348. [CrossRef] [PubMed]
  15. Jacoby GA. Mechanisms of resistance to quinolones. Clin Infect Dis 2005 ; 41 (suppl 2) : S120–S126. [CrossRef] [PubMed]
  16. Rodriguez-Martinez JM, Cano ME, Velasco C, et al. Plasmid-mediated quinolone resistance: an update. J Infect Chemother 2011 ; 17 : 149–182. [CrossRef] [PubMed]
  17. Da Re S, Garnier F, Guerin E, et al. The SOS response promotes qnrB quinolone-resistance determinant expression. EMBO Rep 2009 ; 10 : 929–933. [CrossRef] [PubMed]
  18. Cambray G, Guerout AM, Mazel D. Integrons. Annu Rev Genet 2010 ; 44 : 141–166. [CrossRef] [PubMed]
  19. Guerin E, Cambray G, Sanchez-Alberola N, et al. The SOS response controls integron recombination. Science 2009 ; 324 : 1034. [CrossRef] [PubMed]
  20. Hocquet D, Llanes C, Thouverez M, et al. A Pseudomonas aeruginosa clinical isolate with antibiotic resistance promoted by the SOS response in a patient. ASM 111th general meeting. New Orleans, Louisiana, 2001.
  21. Beaber JW, Hochhut B, Waldor MK. SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature 2004 ; 427 : 72–74. [CrossRef] [PubMed]
  22. Baharoglu Z, Bikard D, Mazel D. Conjugative DND transfer induces the bacterial SOS response, promotes antibiotic resistance development through integron activation. PLoS Genet 2010 ; 6 : e1001165. [CrossRef] [PubMed]
  23. Baharoglu Z, Krin E, Mazel D. Transformation-induced SOS regulation and carbon catabolite control of the V. cholerae integron integrase: connecting environment and genome plasticity. J Bacteriol 2012 (sous presse).
  24. Lewis K. Persister cells. Annu Rev Microbiol 2010 ; 64 : 357–372. [CrossRef] [PubMed]
  25. Dorr T, Vulic M, Lewis K. Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biol 2010 ; 8 : e1000317. [CrossRef] [PubMed]
  26. Linares JF, Gustafsson I, Baquero F, Martinez JL. Antibiotics as intermicrobial signaling agents instead of weapons. Proc Natl Acad Sci USA 2006 ; 103 : 19484–19489. [CrossRef]
  27. Kalan L, Wright GD. Antibiotic adjuvants: multicomponent anti-infective strategies. Expert Rev Mol Med 2011 ; 13 : e5. [CrossRef] [PubMed]
  28. Cirz RT, Chin JK, Andes DR, et al. Inhibition of mutation combating the evolution of antibiotic resistance. PLoS Biol 2005 ; 3 : e176. [CrossRef] [PubMed]
  29. Lu TK, Collins JJ. Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proc Natl Acad Sci USA 2009 ; 106 : 4629–4634. [CrossRef]
  30. Sexton JZ, Wigle TJ, He Q, et al. Novel Inhibitors of E. coli RecA ATPase Activity. Curr Chem Genomics 2010 ; 4 : 34–42. [CrossRef] [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.