Accès gratuit
Numéro
Med Sci (Paris)
Volume 28, Numéro 2, Février 2012
Page(s) 179 - 184
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2012282016
Publié en ligne 27 février 2012
  1. Tremolieres F. Quand le miracle antibiotique vire au cauchemar. Med Sci (Paris) 2010 ; 26 : 925–929. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  2. Nordmann P. Résistance aux carbapénèmes chez les bacilles à Gram négatif. Med Sci (Paris) 2010 ; 26 : 950–959. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  3. Guillemot D. Antibiotic use in humans and bacterial resistance. Curr Opin Microbiol 1999 ; 2 : 494–498. [CrossRef] [PubMed] [Google Scholar]
  4. Depardieu F, Podglajen I, Leclercq R, et al. Modes and modulations of antibiotic resistance gene expression. Clin Microbiol Rev 2007 ; 20 : 79–114. [CrossRef] [PubMed] [Google Scholar]
  5. Courvalin P, Trieu-Cuot P. Minimizing potential resistance: the molecular view. Clin Infect Dis 2001 ; 33 (suppl 3) : S138–S146. [CrossRef] [PubMed] [Google Scholar]
  6. Erill I, Campoy S, Barbe J. Aeons of distress: an evolutionary perspective on the bacterial SOS response. FEMS Microbiol Rev 2007 ; 31 : 637–656. [CrossRef] [PubMed] [Google Scholar]
  7. Kelley WL. Lex marks the spot: the virulent side of SOS and a closer look at the LexA regulon. Mol Microbiol 2006 ; 62 : 1228–1238. [CrossRef] [PubMed] [Google Scholar]
  8. Friedman N, Vardi S, Ronen M, et al. Precise temporal modulation in the response of the SOS DNA repair network in individual bacteria. PLoS Biol 2005 ; 3 : e238. [CrossRef] [PubMed] [Google Scholar]
  9. Friedberg EC, Walker GC, Siede W, et al. DNA repair and mutagenesis. Washington DC: American society of Microbiology Press, 2006. [Google Scholar]
  10. Shaw KJ, Miller N, Liu X, et al. Comparison of the changes in global gene expression of Escherichia coli induced by four bactericidal agents. J Mol Microbiol Biotechnol 2003 ; 5 : 105–122. [CrossRef] [PubMed] [Google Scholar]
  11. Baharoglu Z, Mazel D. Vibrio cholerae triggers SOS and mutagenesis in response to a wide range of antibiotics, a route towards multi-resistance. Antimicrob Agents Chemother 2011 ; 55 : 2438–2441. [CrossRef] [PubMed] [Google Scholar]
  12. Nanduri B, Shack LA, Burgess SC, Lawrence ML. The transcriptional response of Pasteurella multocida to three classes of antibiotics. BMC Genomics 2009 ; 10 (suppl 2) : S4. [CrossRef] [Google Scholar]
  13. Kohanski MA, DePristo MA, Collins JJ. Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. Mol Cell 2010 ; 37 : 311–320. [CrossRef] [PubMed] [Google Scholar]
  14. Gillespie SH, Basu S, Dickens AL, et al. Effect of subinhibitory concentrations of ciprofloxacin on Mycobacterium fortuitum mutation rates. J Antimicrob Chemother 2005 ; 56 : 344–348. [CrossRef] [PubMed] [Google Scholar]
  15. Jacoby GA. Mechanisms of resistance to quinolones. Clin Infect Dis 2005 ; 41 (suppl 2) : S120–S126. [CrossRef] [PubMed] [Google Scholar]
  16. Rodriguez-Martinez JM, Cano ME, Velasco C, et al. Plasmid-mediated quinolone resistance: an update. J Infect Chemother 2011 ; 17 : 149–182. [CrossRef] [PubMed] [Google Scholar]
  17. Da Re S, Garnier F, Guerin E, et al. The SOS response promotes qnrB quinolone-resistance determinant expression. EMBO Rep 2009 ; 10 : 929–933. [CrossRef] [PubMed] [Google Scholar]
  18. Cambray G, Guerout AM, Mazel D. Integrons. Annu Rev Genet 2010 ; 44 : 141–166. [CrossRef] [PubMed] [Google Scholar]
  19. Guerin E, Cambray G, Sanchez-Alberola N, et al. The SOS response controls integron recombination. Science 2009 ; 324 : 1034. [CrossRef] [PubMed] [Google Scholar]
  20. Hocquet D, Llanes C, Thouverez M, et al. A Pseudomonas aeruginosa clinical isolate with antibiotic resistance promoted by the SOS response in a patient. ASM 111th general meeting. New Orleans, Louisiana, 2001. [Google Scholar]
  21. Beaber JW, Hochhut B, Waldor MK. SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature 2004 ; 427 : 72–74. [CrossRef] [PubMed] [Google Scholar]
  22. Baharoglu Z, Bikard D, Mazel D. Conjugative DND transfer induces the bacterial SOS response, promotes antibiotic resistance development through integron activation. PLoS Genet 2010 ; 6 : e1001165. [CrossRef] [PubMed] [Google Scholar]
  23. Baharoglu Z, Krin E, Mazel D. Transformation-induced SOS regulation and carbon catabolite control of the V. cholerae integron integrase: connecting environment and genome plasticity. J Bacteriol 2012 (sous presse). [Google Scholar]
  24. Lewis K. Persister cells. Annu Rev Microbiol 2010 ; 64 : 357–372. [CrossRef] [PubMed] [Google Scholar]
  25. Dorr T, Vulic M, Lewis K. Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biol 2010 ; 8 : e1000317. [CrossRef] [PubMed] [Google Scholar]
  26. Linares JF, Gustafsson I, Baquero F, Martinez JL. Antibiotics as intermicrobial signaling agents instead of weapons. Proc Natl Acad Sci USA 2006 ; 103 : 19484–19489. [CrossRef] [Google Scholar]
  27. Kalan L, Wright GD. Antibiotic adjuvants: multicomponent anti-infective strategies. Expert Rev Mol Med 2011 ; 13 : e5. [CrossRef] [PubMed] [Google Scholar]
  28. Cirz RT, Chin JK, Andes DR, et al. Inhibition of mutation combating the evolution of antibiotic resistance. PLoS Biol 2005 ; 3 : e176. [CrossRef] [PubMed] [Google Scholar]
  29. Lu TK, Collins JJ. Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proc Natl Acad Sci USA 2009 ; 106 : 4629–4634. [CrossRef] [Google Scholar]
  30. Sexton JZ, Wigle TJ, He Q, et al. Novel Inhibitors of E. coli RecA ATPase Activity. Curr Chem Genomics 2010 ; 4 : 34–42. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.