Free Access
Issue
Med Sci (Paris)
Volume 28, Number 2, Février 2012
Page(s) 172 - 178
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2012282015
Published online 27 February 2012
  1. Barker E, Mackewicz CE, Reyes-Teran G, et al. Virological and immunological features of long-term human immunodeficiency virus-infected individuals who have remained asymptomatic compared with those who have progressed to acquired immunodeficiency syndrome. Blood 1998 ; 92 : 3105–3114. [PubMed] [Google Scholar]
  2. Cao Y, Qin L, Zhang L, et al. Virologic and immunologic characterization of long-term survivors of human immunodeficiency virus type 1 infection. N Engl J Med 1995 ; 332 : 201–208. [CrossRef] [PubMed] [Google Scholar]
  3. Martinez V. Combination of HIV-1-specific CD4 Th1 cell responses and IgG2 antibodies is the best predictor for persistence of long-term nonprogression. J Infect Dis 2005 ; 191 : 2053–2063. [CrossRef] [PubMed] [Google Scholar]
  4. Lefrere JJ, Morand-Joubert L, Mariotti M, et al. Even individuals considered as long-term nonprogressors show biological signs of progression after 10 years of human immunodeficiency virus infection. Blood 1997 ; 90 : 1133–1140. [PubMed] [Google Scholar]
  5. Lambotte O, Boufassa F, Madec Y, et al. HIV controllers: a homogeneous group of HIV-1-infected patients with spontaneous control of viral replication. Clin Infect Dis 2005 ; 41 : 1053–1056. [CrossRef] [PubMed] [Google Scholar]
  6. Okulicz JF, Marconi VC, Landrum ML, et al. Clinical outcomes of elite controllers, viremic controllers, and long-term nonprogressors in the US Department of Defense HIV natural history study. J Infect Dis 2009 ; 200 : 1714–1723. [CrossRef] [PubMed] [Google Scholar]
  7. Martinez V, Autran B. Les HIV controllers : une nouvelle entité évolutive de l’infection par le VIH ? Med Sci (Paris) 2008 ; 24 : 7–9. [CrossRef] [EDP Sciences] [Google Scholar]
  8. Grabar S, Selinger-Leneman H, Abgrall S, et al. Prevalence and comparative characteristics of long-term nonprogressors and HIV controller patients in the French Hospital Database on HIV. Aids 2009 ; 23 : 1163–1169. [CrossRef] [PubMed] [Google Scholar]
  9. Pereyra F, Addo MM, Kaufmann DE, et al. Genetic and immunologic heterogeneity among persons who control HIV infection in the absence of therapy. J Infect Dis 2008 ; 197 : 563–571. [CrossRef] [PubMed] [Google Scholar]
  10. Boufassa F, Saez-Cirion A, Lechenadec J, et al. CD4 dynamics over a 15 year-period among HIV controllers enrolled in the ANRS French observatory. PloS One 2011 ; 6 : e18726. [CrossRef] [PubMed] [Google Scholar]
  11. Pereyra F, Palmer S, Miura T, et al. Persistent low-level viremia in HIV-1 elite controllers and relationship to immunologic parameters. J Infect Dis 2009 ; 200 : 984–290. [CrossRef] [PubMed] [Google Scholar]
  12. Lamine A, Caumont-Sarcos A, Chaix ML, et al. Replication-competent HIV strains infect HIV controllers despite undetectable viremia (ANRS EP36 study). Aids 2007 ; 21 : 1043–1045. [CrossRef] [PubMed] [Google Scholar]
  13. Miura T, Brockman MA, Brumme CJ, et al. Genetic characterization of human immunodeficiency virus type 1 in elite controllers: lack of gross genetic defects or common amino acid changes. J Virol 2008 ; 82 : 8422–8430. [CrossRef] [PubMed] [Google Scholar]
  14. Hatano H, Delwart EL, Norris PJ, et al. Evidence for persistent low-level viremia in individuals who control human immunodeficiency virus in the absence of antiretroviral therapy. J Virol 2009 ; 83 : 329–335. [CrossRef] [PubMed] [Google Scholar]
  15. Miura T, Brockman MA, Brumme ZL, et al. HLA-associated alterations in replication capacity of chimeric NL4–3 viruses carrying gag-protease from elite controllers of human immunodeficiency virus type 1. J Virol 2009 ; 83 : 140–149. [CrossRef] [PubMed] [Google Scholar]
  16. Okulicz JF, Lambotte O. Epidemiology and clinical characteristics of elite controllers. Curr Opin HIV AIDS 2011 ; 6 : 163–168. [CrossRef] [PubMed] [Google Scholar]
  17. Dalmasso C, Carpentier W, Meyer L, et al. Distinct genetic loci control plasma HIV-RNA, cellular HIV-DNA levels in HIV-1 infection: the ANRS Genome wide association 01 study. PloS One 2008 ; 3 : e3907. [CrossRef] [PubMed] [Google Scholar]
  18. Fellay J, Shianna KV, Ge D, et al. A whole-genome association study of major determinants for host control of HIV-1. Science 2007 ; 317 : 944–947. [CrossRef] [PubMed] [Google Scholar]
  19. Van Grevenynghe J, Procopio FA, He Z, et al. Transcription factor FOXO3a controls the persistence of memory CD4+ T cells during HIV infection. Nat Med 2008 ; 14 : 266–274. [CrossRef] [PubMed] [Google Scholar]
  20. Vigneault F, Woods M, Buzon MJ, et al. Transcriptional profiling of CD4 T cells identifies distinct subgroups of HIV-1 elite controllers. J Virol 2011 ; 85 : 3015–3019. [CrossRef] [PubMed] [Google Scholar]
  21. Saez-Cirion A, Hamimi C, Bergamaschi A, et al. Restriction of HIV-1 replication in macrophages and CD4+ T cells from HIV controllers. Blood 2011 ; 118 : 955–964. [CrossRef] [PubMed] [Google Scholar]
  22. Chen H, Li C, Huang J, et al. CD4+ T cells from elite controllers resist HIV-1 infection by selective upregulation of p21. J Clin Invest 2011 ; 121 : 1549–1560. [CrossRef] [PubMed] [Google Scholar]
  23. Brenchley JM, Price DA, Schacker TW, et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med 2006 ; 12 : 1365–1371. [Google Scholar]
  24. Hunt PW, Brenchley J, Sinclair E, et al. Relationship between T cell activation and CD4+ T cell count in HIV-seropositive individuals with undetectable plasma HIV RNA levels in the absence of therapy. J Infect Dis 2008 ; 197 : 126–133. [CrossRef] [PubMed] [Google Scholar]
  25. Hsue PY, Hunt PW, Sinclair E, et al. Increased carotid intima-media thickness in HIV patients is associated with increased cytomegalovirus-specific T-cell responses. Aids 2006 ; 20 : 2275–2283. [Google Scholar]
  26. Saez-Cirion A, Lacabaratz C, Lambotte O, et al. HIV controllers exhibit potent CD8 T cell capacity to suppress HIV infection ex vivo and peculiar cytotoxic T lymphocyte activation phenotype Proc Natl Acad Sci USA 2007 ; 104 : 6776–6781. [CrossRef] [Google Scholar]
  27. Saez-Cirion A, Pancino G, Sinet M, et al. HIV controllers: how do they tame the virus?. Trends Immunol 2007 ; 28 : 532–540. [CrossRef] [PubMed] [Google Scholar]
  28. Betts MR, Nason MC, West SM, et al. HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells. Blood 2006 ; 107 : 4781–4789. [CrossRef] [PubMed] [Google Scholar]
  29. Hersperger AR, Pereyra F, Nason M, et al. Perforin expression directly ex vivo by HIV-specific CD8 T-cells is a correlate of HIV elite control. PLoS Pathog 2010 ; 6 : e1000917. [CrossRef] [PubMed] [Google Scholar]
  30. Migueles SA, Laborico AC, Shupert WL, et al. HIV-specific CD8+ T cell proliferation is coupled to perforin expression and is maintained in nonprogressors. Nat Immunol 2002 ; 3 : 1061–1068. [CrossRef] [PubMed] [Google Scholar]
  31. Saez-Cirion A, Sinet M, Shin SY, et al. Heterogeneity in HIV suppression by CD8 T cells from HIV controllers: association with Gag-specific CD8 T cell responses. J Immunol 2009 ; 182 : 7828–7837. [CrossRef] [PubMed] [Google Scholar]
  32. Miura T, Brockman MA, Schneidewind A, et al. HLA-B57/B*5801 human immunodeficiency virus type 1 elite controllers select for rare gag variants associated with reduced viral replication capacity and strong cytotoxic T-lymphocyte (corrected) recognition. J Virol 2009 ; 83 : 2743–2755. [CrossRef] [PubMed] [Google Scholar]
  33. Potter SJ, Lacabaratz C, Lambotte O, et al. Preserved central memory and activated effector memory CD4+ T-cell subsets in human immunodeficiency virus controllers: an ANRS EP36 study. J Virol 2007 ; 81 : 13904–13915. [CrossRef] [PubMed] [Google Scholar]
  34. Vingert B, Perez-Patrigeon S, Jeannin P, et al. HIV controller CD4+ T cells respond to minimal amounts of Gag antigen due to high TCR avidity. PLoS Pathog 2011 ; 6 : e1000780. [CrossRef] [Google Scholar]
  35. O’Connell KA, Han Y, Williams TM, et al. Role of natural killer cells in a cohort of elite suppressors: low frequency of the protective KIR3DS1 allele and limited inhibition of human immunodeficiency virus type 1 replication in vitro. J Virol 2009 ; 83 : 5028–5034. [CrossRef] [PubMed] [Google Scholar]
  36. Vieillard V, Fausther-Bovendo H, Samri A, Debre P. Specific phenotypic and functional features of natural killer cells from HIV-infected long-term nonprogressors and HIV controllers. J Acquir Immune Defic Syndr 2011 ; 53 : 564–573. [Google Scholar]
  37. Lambotte O, Ferrari G, Moog C, et al. Heterogeneous neutralizing antibody and antibody-dependent cell cytotoxicity responses in HIV-1 elite controllers. Aids 2009 ; 23 : 897–906. [Google Scholar]
  38. Emu B, Sinclair E, Favre D, et al. Phenotypic, functional, and kinetic parameters associated with apparent T-cell control of human immunodeficiency virus replication in individuals with and without antiretroviral treatment. J Virol 2005 ; 79 : 14169–14178. [CrossRef] [PubMed] [Google Scholar]
  39. McMichael AJ, Rowland-Jones SL. Cellular immune responses to HIV. Nature 2001 ; 410 : 980–987. [CrossRef] [PubMed] [Google Scholar]
  40. Goujard C, Chaix ML, Lambotte O, et al. Spontaneous control of viral replication during primary HIV infection: when is “IV controller” status established? Clin Infect Dis 2009 ; 49 : 982–986. [CrossRef] [PubMed] [Google Scholar]
  41. Ferre AL, Hunt PW, Critchfield JW, et al. Mucosal immune responses to HIV-1 in elite controllers: a potential correlate of immune control. Blood 2009 ; 113 : 3978–3989. [CrossRef] [PubMed] [Google Scholar]
  42. Cellerai C, Harari A, Stauss H, et al. Early, prolonged antiretroviral therapy is associated with an HIV-1-specific T-cell profile comparable to that of long-term non-progressors. PLoS One 2011 ; 6 : e18164. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.