Free Access
Med Sci (Paris)
Volume 28, Number 2, Février 2012
Page(s) 163 - 171
Section M/S Revues
Published online 27 February 2012
  1. WHO. Worl Malaria Report: 2010. Geneva: World Health Organization, 2010. [Google Scholar]
  2. Utzinger J, Tanner M, Kammen DM, et al. Integrated programme is key to malaria control. Nature 2002 ; 419 : 431. [CrossRef] [PubMed] [Google Scholar]
  3. Agnandji ST, Lell B, Soulanoudjingar SS, et al. First results of phase 3 trial of RTS, S/AS01 malaria vaccine in African children. N Engl J Med 2011 ; 365 : 1863–1875. [CrossRef] [PubMed] [Google Scholar]
  4. Segura V. Génétique et amélioration d’Artemisia annua L . pour une production durable d’antipaludiques à base d’artémisinine. Med Sci (Paris) 2010 ; 26 : 701–703. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  5. Afonso A, Hunt P, Cheesman S, et al. Malaria parasites can develop stable resistance to artemisinin but lack mutations in candidate genes atp6 (encoding the sarcoplasmic and endoplasmic reticulum Ca2+ ATPase), tctp, mdr1, and cg10. Antimicrob Agents Chemother 2006 ; 50 : 480–489. [CrossRef] [PubMed] [Google Scholar]
  6. Noedl H, Se Y, Schaecher K, et al. Evidence of artemisinin-resistant malaria in western Cambodia. N Engl J Med 2008 ; 359 : 2619–2620. [Google Scholar]
  7. Maude RJ, Woodrow CJ, White LJ. Artemisinin antimalarials: preserving the magic bullet. Drug Dev Res 2010 ; 71 : 12–19. [PubMed] [Google Scholar]
  8. McFadden GI, Reith ME, Munholland J, Lang-Unnasch N. Plastid in human parasites. Nature 1996 ; 381 : 482. [CrossRef] [PubMed] [Google Scholar]
  9. Kohler S, Delwiche CF, Denny PW, et al. A plastid of probable green algal origin in Apicomplexan parasites. Science 1997 ; 275 : 1485–1489. [CrossRef] [PubMed] [Google Scholar]
  10. Cavalier-Smith T. Membrane heredity and early chloroplast evolution. Trends Plant Sci 2000 ; 5 : 174–182. [CrossRef] [PubMed] [Google Scholar]
  11. He CY, Shaw MK, Pletcher CH, et al. A plastid segregation defect in the protozoan parasite Toxoplasma gondii. EMBO J 2001 ; 20 : 330–339. [CrossRef] [PubMed] [Google Scholar]
  12. Marechal E, Cesbron-Delauw MF. The apicoplast: a new member of the plastid family. Trends Plant Sci 2001 ; 6 : 200–205. [CrossRef] [PubMed] [Google Scholar]
  13. Waller RF, Keeling PJ, Donald RG, et al. Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. Proc Natl Acad Sci USA 1998 ; 95 : 12352–12357. [CrossRef] [Google Scholar]
  14. Jomaa H, Wiesner J, Sanderbrand S, et al. Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. Science 1999 ; 285 : 1573–1576. [CrossRef] [PubMed] [Google Scholar]
  15. Zuegge J, Ralph S, Schmuker M, et al. Deciphering apicoplast targeting signals: feature extraction from nuclear-encoded precursors of Plasmodium falciparum apicoplast proteins. Gene 2001 ; 280 : 19–26. [CrossRef] [PubMed] [Google Scholar]
  16. Fleige T, Soldati-Favre D. Targeting the transcriptional and translational machinery of the endosymbiotic organelle in apicomplexans. Curr Drug Targets 2008 ; 9 : 948–956. [CrossRef] [PubMed] [Google Scholar]
  17. Van Dooren GG, Marti M, Tonkin CJ, et al. Development of the endoplasmic reticulum, mitochondrion and apicoplast during the asexual life cycle of Plasmodium falciparum. Mol Microbiol 2005 ; 57 : 405–419. [CrossRef] [PubMed] [Google Scholar]
  18. Seeber F. Biosynthetic pathways of plastid-derived organelles as potential drug targets against parasitic Apicomplexa. Curr Drug Targets Immune Endocr Metabol Disord 2003 ; 3 : 99–109. [CrossRef] [PubMed] [Google Scholar]
  19. Fichera ME, Roos DS. A plastid organelle as a drug target in apicomplexan parasites. Nature 1997 ; 390 : 407–409. [CrossRef] [PubMed] [Google Scholar]
  20. Dahl EL, Rosenthal PJ. Multiple antibiotics exert delayed effects against the Plasmodium falciparum apicoplast. Antimicrob Agents Chemother 2007 ; 51 : 3485–3490. [CrossRef] [PubMed] [Google Scholar]
  21. Gras C, Laroche R, Guelain J, et al. Place actuelle de la doxycycline dans la chimioprophylaxie du paludisme à Plasmodium falciparum. Bull Soc Pathol Exot 1993 ; 86 : 52–55. [PubMed] [Google Scholar]
  22. Tarun AS, Peng X, Dumpit RF, et al. A combined transcriptome and proteome survey of malaria parasite liver stages. Proc Natl Acad Sci USA 2008 ; 105 : 305–310. [CrossRef] [Google Scholar]
  23. Yeh E, DeRisi JL. Chemical rescue of malaria parasites lacking an apicoplast defines organelle function in blood-stage Plasmodium falciparum. PLoS Biol 2011 ; 9 : e1001138. [CrossRef] [PubMed] [Google Scholar]
  24. Botte CY, Dubar F, McFadden GI, et al. Plasmodium falciparum apicoplast drugs: targets or off-targets ? Chem Rev 2011 ; 25 octobre (online). DOI : 10.1021/cr200258w. [Google Scholar]
  25. McLeod R, Muench SP, Rafferty JB, et al. Triclosan inhibits the growth of Plasmodium falciparum and Toxoplasma gondii by inhibition of apicomplexan Fab I. Int J Parasitol 2001 ; 31 : 109–113. [CrossRef] [PubMed] [Google Scholar]
  26. Surolia N, Surolia A. Triclosan offers protection against blood stages of malaria by inhibiting enoyl-ACP reductase of Plasmodium falciparum. Nat Med 2001 ; 7 : 167–173. [CrossRef] [PubMed] [Google Scholar]
  27. Yu M, Kumar TR, Nkrumah LJ, et al. The fatty acid biosynthesis enzyme FabI plays a key role in the development of liver-stage malarial parasites. Cell Host Microbe 2008 ; 4 : 567–578. [CrossRef] [PubMed] [Google Scholar]
  28. Baschong W, Wittlin S, Inglis KA, et al. Triclosan is minimally effective in rodent malaria models. Nat Med 2011 ; 17 : 33–34. [CrossRef] [PubMed] [Google Scholar]
  29. Surolia A, Surolia N. Triclosan is minimally effective in rodent malaria models. Reply. Nat Med 2011 ; 17 : 34–35. [CrossRef] [Google Scholar]
  30. Frankland S, Elliott SR, Yosaatmadja F, et al. Serum lipoproteins promote efficient presentation of the malaria virulence protein PfEMP1 at the erythrocyte surface. Eukaryot Cell 2007 ; 6 : 1584–1594. [CrossRef] [PubMed] [Google Scholar]
  31. Katan MB, Zock PL, Mensink RP. Effects of fats and fatty acids on blood lipids in humans: an overview. Am J Clin Nutr 1994 ; 60 : S1017–S1022. [Google Scholar]
  32. Suhre K, Shin SY, Petersen AK, et al. Human metabolic individuality in biomedical and pharmaceutical research. Nature 2011 ; 477 : 54–60. [CrossRef] [PubMed] [Google Scholar]
  33. Pradel G, Schlitzer M. Antibiotics in malaria therapy and their effect on the parasite apicoplast. Curr Mol Med ; 10 : 335–349. [Google Scholar]
  34. Marechal E, Riou M, Kerboeuf D, et al. Membrane lipidomics for the discovery of new antiparasitic drug targets. Trends Parasitol 2011 ; 27 : 496–504. [Google Scholar]
  35. Bisanz C, Botté C, Saïdani N, et al. Structure, function and biogenesis of the secondary plastid of apicomplexan parasites. In : Schoefs B, ed. Current research in plant cell compartments. Kerala : Research Signpost Publ, 2008 : 393–423. [Google Scholar]
  36. Pino P, Soldati-Favre D. Invasion et réplication chez les Apicomplexes : tous les chemins mènent à ROM. Med Sci (Paris) 2011 ; 27 : 576–578. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.