Accès gratuit
Numéro
Med Sci (Paris)
Volume 28, Numéro 2, Février 2012
Page(s) 163 - 171
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2012282014
Publié en ligne 27 février 2012
  1. WHO. Worl Malaria Report: 2010. Geneva: World Health Organization, 2010. [CrossRef] [Google Scholar]
  2. Utzinger J, Tanner M, Kammen DM, et al. Integrated programme is key to malaria control. Nature 2002 ; 419 : 431. [CrossRef] [PubMed] [Google Scholar]
  3. Agnandji ST, Lell B, Soulanoudjingar SS, et al. First results of phase 3 trial of RTS, S/AS01 malaria vaccine in African children. N Engl J Med 2011 ; 365 : 1863–1875. [CrossRef] [PubMed] [Google Scholar]
  4. Segura V. Génétique et amélioration d’Artemisia annua L . pour une production durable d’antipaludiques à base d’artémisinine. Med Sci (Paris) 2010 ; 26 : 701–703. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  5. Afonso A, Hunt P, Cheesman S, et al. Malaria parasites can develop stable resistance to artemisinin but lack mutations in candidate genes atp6 (encoding the sarcoplasmic and endoplasmic reticulum Ca2+ ATPase), tctp, mdr1, and cg10. Antimicrob Agents Chemother 2006 ; 50 : 480–489. [CrossRef] [PubMed] [Google Scholar]
  6. Noedl H, Se Y, Schaecher K, et al. Evidence of artemisinin-resistant malaria in western Cambodia. N Engl J Med 2008 ; 359 : 2619–2620. [CrossRef] [PubMed] [Google Scholar]
  7. Maude RJ, Woodrow CJ, White LJ. Artemisinin antimalarials: preserving the magic bullet. Drug Dev Res 2010 ; 71 : 12–19. [PubMed] [Google Scholar]
  8. McFadden GI, Reith ME, Munholland J, Lang-Unnasch N. Plastid in human parasites. Nature 1996 ; 381 : 482. [CrossRef] [PubMed] [Google Scholar]
  9. Kohler S, Delwiche CF, Denny PW, et al. A plastid of probable green algal origin in Apicomplexan parasites. Science 1997 ; 275 : 1485–1489. [CrossRef] [PubMed] [Google Scholar]
  10. Cavalier-Smith T. Membrane heredity and early chloroplast evolution. Trends Plant Sci 2000 ; 5 : 174–182. [CrossRef] [PubMed] [Google Scholar]
  11. He CY, Shaw MK, Pletcher CH, et al. A plastid segregation defect in the protozoan parasite Toxoplasma gondii. EMBO J 2001 ; 20 : 330–339. [CrossRef] [PubMed] [Google Scholar]
  12. Marechal E, Cesbron-Delauw MF. The apicoplast: a new member of the plastid family. Trends Plant Sci 2001 ; 6 : 200–205. [CrossRef] [PubMed] [Google Scholar]
  13. Waller RF, Keeling PJ, Donald RG, et al. Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. Proc Natl Acad Sci USA 1998 ; 95 : 12352–12357. [CrossRef] [Google Scholar]
  14. Jomaa H, Wiesner J, Sanderbrand S, et al. Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. Science 1999 ; 285 : 1573–1576. [CrossRef] [PubMed] [Google Scholar]
  15. Zuegge J, Ralph S, Schmuker M, et al. Deciphering apicoplast targeting signals: feature extraction from nuclear-encoded precursors of Plasmodium falciparum apicoplast proteins. Gene 2001 ; 280 : 19–26. [CrossRef] [PubMed] [Google Scholar]
  16. Fleige T, Soldati-Favre D. Targeting the transcriptional and translational machinery of the endosymbiotic organelle in apicomplexans. Curr Drug Targets 2008 ; 9 : 948–956. [CrossRef] [PubMed] [Google Scholar]
  17. Van Dooren GG, Marti M, Tonkin CJ, et al. Development of the endoplasmic reticulum, mitochondrion and apicoplast during the asexual life cycle of Plasmodium falciparum. Mol Microbiol 2005 ; 57 : 405–419. [CrossRef] [PubMed] [Google Scholar]
  18. Seeber F. Biosynthetic pathways of plastid-derived organelles as potential drug targets against parasitic Apicomplexa. Curr Drug Targets Immune Endocr Metabol Disord 2003 ; 3 : 99–109. [CrossRef] [PubMed] [Google Scholar]
  19. Fichera ME, Roos DS. A plastid organelle as a drug target in apicomplexan parasites. Nature 1997 ; 390 : 407–409. [CrossRef] [PubMed] [Google Scholar]
  20. Dahl EL, Rosenthal PJ. Multiple antibiotics exert delayed effects against the Plasmodium falciparum apicoplast. Antimicrob Agents Chemother 2007 ; 51 : 3485–3490. [CrossRef] [PubMed] [Google Scholar]
  21. Gras C, Laroche R, Guelain J, et al. Place actuelle de la doxycycline dans la chimioprophylaxie du paludisme à Plasmodium falciparum. Bull Soc Pathol Exot 1993 ; 86 : 52–55. [PubMed] [Google Scholar]
  22. Tarun AS, Peng X, Dumpit RF, et al. A combined transcriptome and proteome survey of malaria parasite liver stages. Proc Natl Acad Sci USA 2008 ; 105 : 305–310. [CrossRef] [Google Scholar]
  23. Yeh E, DeRisi JL. Chemical rescue of malaria parasites lacking an apicoplast defines organelle function in blood-stage Plasmodium falciparum. PLoS Biol 2011 ; 9 : e1001138. [CrossRef] [PubMed] [Google Scholar]
  24. Botte CY, Dubar F, McFadden GI, et al. Plasmodium falciparum apicoplast drugs: targets or off-targets ? Chem Rev 2011 ; 25 octobre (online). DOI : 10.1021/cr200258w. [Google Scholar]
  25. McLeod R, Muench SP, Rafferty JB, et al. Triclosan inhibits the growth of Plasmodium falciparum and Toxoplasma gondii by inhibition of apicomplexan Fab I. Int J Parasitol 2001 ; 31 : 109–113. [CrossRef] [PubMed] [Google Scholar]
  26. Surolia N, Surolia A. Triclosan offers protection against blood stages of malaria by inhibiting enoyl-ACP reductase of Plasmodium falciparum. Nat Med 2001 ; 7 : 167–173. [CrossRef] [PubMed] [Google Scholar]
  27. Yu M, Kumar TR, Nkrumah LJ, et al. The fatty acid biosynthesis enzyme FabI plays a key role in the development of liver-stage malarial parasites. Cell Host Microbe 2008 ; 4 : 567–578. [CrossRef] [PubMed] [Google Scholar]
  28. Baschong W, Wittlin S, Inglis KA, et al. Triclosan is minimally effective in rodent malaria models. Nat Med 2011 ; 17 : 33–34. [CrossRef] [PubMed] [Google Scholar]
  29. Surolia A, Surolia N. Triclosan is minimally effective in rodent malaria models. Reply. Nat Med 2011 ; 17 : 34–35. [CrossRef] [Google Scholar]
  30. Frankland S, Elliott SR, Yosaatmadja F, et al. Serum lipoproteins promote efficient presentation of the malaria virulence protein PfEMP1 at the erythrocyte surface. Eukaryot Cell 2007 ; 6 : 1584–1594. [CrossRef] [PubMed] [Google Scholar]
  31. Katan MB, Zock PL, Mensink RP. Effects of fats and fatty acids on blood lipids in humans: an overview. Am J Clin Nutr 1994 ; 60 : S1017–S1022. [Google Scholar]
  32. Suhre K, Shin SY, Petersen AK, et al. Human metabolic individuality in biomedical and pharmaceutical research. Nature 2011 ; 477 : 54–60. [CrossRef] [PubMed] [Google Scholar]
  33. Pradel G, Schlitzer M. Antibiotics in malaria therapy and their effect on the parasite apicoplast. Curr Mol Med ; 10 : 335–349. [CrossRef] [PubMed] [Google Scholar]
  34. Marechal E, Riou M, Kerboeuf D, et al. Membrane lipidomics for the discovery of new antiparasitic drug targets. Trends Parasitol 2011 ; 27 : 496–504. [CrossRef] [PubMed] [Google Scholar]
  35. Bisanz C, Botté C, Saïdani N, et al. Structure, function and biogenesis of the secondary plastid of apicomplexan parasites. In : Schoefs B, ed. Current research in plant cell compartments. Kerala : Research Signpost Publ, 2008 : 393–423. [Google Scholar]
  36. Pino P, Soldati-Favre D. Invasion et réplication chez les Apicomplexes : tous les chemins mènent à ROM. Med Sci (Paris) 2011 ; 27 : 576–578. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.