Free Access
Med Sci (Paris)
Volume 26, Number 2, Février 2010
Page(s) 185 - 192
Section M/S revues
Published online 15 February 2010
  1. Catros-Quemener V, Bouet F, Genetet N. Immunité antitumorale et thérapies cellulaires du cancer. Med Sci (Paris) 2003; 19 : 43–53. [Google Scholar]
  2. Dudley ME, Wunderlich JR, Yang JC, et al. Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol 2005; 23 : 2346–57. [Google Scholar]
  3. Hayday AC. Gamma-delta cells: a right time and a right place for a conserved third way of protection. Annu Rev Immunol 2000; 18 : 975–1026. [Google Scholar]
  4. Constant P, Davodeau F, Peyrat MA, et al. Stimulation of human gamma delta T cells by nonpeptidic mycobacterial ligands. Science 1994; 264 : 267–70. [Google Scholar]
  5. Gober HJ, Kistowska M, Angman L, et al. Human T cell receptor γδ cells recognize endogenous mevalonate metabolites in tumor cells. J Exp Med 2003; 197 : 163–8. [Google Scholar]
  6. Boedec A, Sicard H, Dessolin J, et al. Synthesis and biological activity of phosphonate analogues and geometric isomers of the highly potent phosphoantigen (E)-1-hydroxy- 2-methylbut-2-enyl 4-diphosphate. J Med Chem 2008; 51 : 1747–54. [Google Scholar]
  7. Bouet-Toussaint F, Cabillic F, Toutirais O, et al. Vγ9Vδ2 T cells-mediated recognition of human solid tumors. Potential for immunotherapy of hepatocellular and colorectal carcinomas. Cancer Immunol Immunother 2008; 57 : 531–9. [Google Scholar]
  8. Corvaisier M, Moreau-Aubry A, Diez E, et al. Vγ9Vδ2 T cell response to colon carcinoma cells. J Immunol 2005; 175 : 5481–8. [Google Scholar]
  9. Scotet E, Martinez LO, Grant E, et al. Tumor recognition following Vγ9Vδ2T cell receptor interactions with a surface F1-ATPase-related structure and apolipoprotein A-I. Immunity 2005; 22 : 71–80. [Google Scholar]
  10. Toutirais O, Cabillic F, Le Friec G, et al. DNAX accessory molecule-1 (CD226) promotes human hepatocellular carcinoma cell lysis by Vγ9Vδ2 T cells. Eur J Immunol 2009; 39 : 1361–8. [Google Scholar]
  11. Bonneville M, Scotet E. Human Vgamma9Vdelta2 T cells: promising new leads for immunotherapy of infections and tumors. Curr Opin Immunol 2006; 18 : 539–46. [Google Scholar]
  12. Gong G, Shao L, Wang Y, et al. Phosphoantigen-activated V gamma 2V delta 2 T cells antagonize IL-2-induced CD4+CD25+Foxp3+ T regulatory cells in mycobacterial infection. Blood 2009; 113 : 837–45. [Google Scholar]
  13. Salot S, Laplace C, Saiagh S, et al. Large scale expansion of gamma9delta2 T lymphocytes: Innacell gammadelta cell therapy product. J Immunol Methods 2007; 326 : 63–75. [Google Scholar]
  14. Viey E, Lucas C, Romagne F, et al. Chemokine receptors expression and migration potential of tumor-infiltrating and peripheral-expanded Vgamma9Vdelta2 T cells from renal cell carcinoma patients. J Immunother 2008; 31 : 313–23. [Google Scholar]
  15. Gertner-Dardenne J, Bonnafous C, Bezombes C, et al. Bromohydrin pyrophosphate enhances antibody-dependent cell-mediated cytotoxicity induced by therapeutic antibodies. Blood 2009; 113 : 4875–84. [Google Scholar]
  16. Zocchi MR, Ferrarini M, Rugarli C. Selective lysis of the autologous tumor by delta TCS1+ gamma/delta+ tumor-infiltrating lymphocytes from human lung carcinomas. Eur J Immunol 1990; 20 : 2685–9. [Google Scholar]
  17. Thomas ML, Samant UC, Deshpande RK, et al. γδT cells lyse autologous and allogenic oesophageal tumours : involvement of heat-shock proteins in the tumour cell lysis. Cancer Immunol Immunother 2000; 48 : 653–9. [Google Scholar]
  18. Viey E, Fromont G, Escudier B, et al. Phosphostim™ activated-γδ T cells kill autologous metastatic renal cell carcinoma. J Immunol 2005; 174 : 1338–47. [Google Scholar]
  19. Zheng BJ, Chan KW, IM S, et al. Anti-tumor effects of human peripheral γδ T cells in a mouse tumor model. Int J Cancer 2001; 92 : 421–5. [Google Scholar]
  20. Wilhem M, Kunzmann V, Eckstein S, et al. γδ T cells for immune therapy of patients with lymphoid malignancies. Blood 2003; 102 : 200–6. [Google Scholar]
  21. Dieli F, Vermijlen D, Fulfaro F, et al. Targeting human gammadelta T cells with zoledronate and interleukin-2 for immunotherapy of hormone-refractory prostate cancer. Cancer Res 2007; 67 : 7450–7. [Google Scholar]
  22. Kobayashi H, Tanaka Y, Yagi J, et al. Safety profile and anti-tumor effects of adoptive immunotherapy using gamma-delta T cells against advanced renal cell carcinoma: a pilot study. Cancer Immunol Immunother 2007; 56 : 469–76. [Google Scholar]
  23. Bennouna J, Bompas E, Neidhardt EM, et al. Phase-I study of Innacell gammadeltatrade mark, an autologous cell-therapy product highly enriched in gamma9delta2 T lymphocytes, in combination with IL-2, in patients with metastatic renal cell carcinoma. Cancer Immunol Immunother 2008; 57 : 1599–609. [Google Scholar]
  24. Banchereau J. Grandeur et servitude de l’immunologie humaine. Med Sci (Paris) 2008; 24 : 783–6. [Google Scholar]
  25. Li L, Wu CY. CD4+ CD25+ Treg cells inhibit human memory gammadelta T cells to produce IFN-gamma in response to M. tuberculosis antigen ESAT-6. Blood 2008; 111 : 5629–36. [Google Scholar]
  26. Sicard H, Ingoure S, Luciani B, et al. In vivo immunomanipulation of V gamma 9V delta 2 T cells with a synthetic phosphoantigen in a preclinical nonhuman primate model. J Immunol 2005; 175 : 5471–80. [Google Scholar]
  27. Thedrez A, Harly C, Morice A, et al. IL-21-mediated potentiation of antitumor cytolytic and proinflammatory responses of human Vgamma9Vdelta2 T cells for adoptive immunotherapy. J Immunol 2009; 182 : 3423–31. [Google Scholar]
  28. Thedrez A, Sabourin C, Gertner J, et al. Self/non-self discrimination by human gammadelta T cells: simple solutions for a complex issue ? Immunol Rev 2007; 215 : 123–35. [Google Scholar]
  29. Takahara M, Miyai M, Tomiyama M, et al. Copulsing tumor antigen-pulsed dendritic cells with zoledronate efficiently enhance the expansion of tumor antigen-specific CD8+ T cells via Vgamma9gammadelta T cell activation. J Leukoc Biol 2008; 83 : 742–54. [Google Scholar]
  30. Espinosa E, Tabiasco J, Hudrisier D, et al. Synaptic transfer by human gamma delta T cells stimulated with soluble or cellular antigens. J Immunol 2002; 168 : 6336–43. [Google Scholar]
  31. Caumartin J, Favier B, Daouya M, et al. Trogocytosis-based generation of suppressive NK cells. EMBO J 2007; 26 : 1423–33. [Google Scholar]
  32. Brandes M, Willimann K, Bioley G, et al. Cross-presenting human gammadelta T cells induce robust CD8+ alphabeta T cell responses. Proc Natl Acad Sci USA 2009; 106 : 2307–12. [Google Scholar]
  33. Zitvogel L, Apetoh L, Ghiringhelli F, et al. The anticancer immune response: indispensable for therapeutic success ? J Clin Invest 2008; 118 : 1991–2001. [Google Scholar]
  34. Chouaib S, El Hage F, Benlalam H, et al. Immunothérapie du cancer : espoirs et réalités. Med Sci (Paris) 2006; 22 : 755–9. [Google Scholar]
  35. Le Deist F, de Saint Basile G, Rieux-Laucat F, Hivroz C, Fischer A. Anomalies d’expression du complexe récepteur T de l’antigène CD3 et déficits immunitaires. Med Sci (Paris) 2007; 23 : 161–6. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.