Free Access
Issue
Med Sci (Paris)
Volume 26, Number 2, Février 2010
Page(s) 193 - 200
Section M/S revues
DOI https://doi.org/10.1051/medsci/2010262193
Published online 15 February 2010
  1. Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature 2001; 411 : 366–74. [Google Scholar]
  2. Thilly WG. Analysis of chemically induced mutation in single cell populations. Basic Life Sci 1983; 23 : 337–78. [Google Scholar]
  3. Holmquist GP, Gao S. Somatic mutation theory, DNA repair rates, and the molecular epidemiology of p53 mutations. Mutat Res 1997; 386 : 69–101. [Google Scholar]
  4. Greenblatt MS, Bennett WP, Hollstein M, Harris CC. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 1994; 54 : 4855–78. [Google Scholar]
  5. Tornaletti S, Rozek D, Pfeifer GP. The distribution of UV photoproducts along the human p53 gene and its relation to mutations in skin cancer. Oncogene 1993; 8 : 2051–7. [Google Scholar]
  6. Drouin R, Therrien JP. UVB-induced cyclobutane pyrimidine dimer frequency correlates with skin cancer mutational hotspots in p53. Photochem Photobiol 1997; 66 : 719–26. [Google Scholar]
  7. Therrien JP, Rouabhia M, Drobetsky EA, Drouin R. The multilayered organization of engineered human skin does not influence the formation of sunlight-induced cyclobutane pyrimidine dimers in cellular DNA. Cancer Res 1999; 59 : 285–9. [Google Scholar]
  8. Drobetsky EA, Turcotte J, Chateauneuf A. A role for ultraviolet A in solar mutagenesis. Proc Natl Acad Sci USA 1995; 92 : 2350–4. [Google Scholar]
  9. Sage E, Perdiz D, Grof P, et al. DNA damage induced by UVA radiation: role in solar mutagenesis. In : Sage E, Drouin R, Rouabhia M, eds. From DNA photolesions to mutations, skin cancer and cell death. Cambridge, UK : The Royal Society of Chemistry, 2005 : 33–47. [Google Scholar]
  10. Rochette PJ, Therrien JP, Drouin R, et al. UVA-induced cyclobutane pyrimidine dimers form predominantly at thymine-thymine dipyrimidines and correlate with the mutation spectrum in rodent cells. Nucleic Acids Res 2003; 31 : 2786–94. [Google Scholar]
  11. Besaratinia A, Kim SI, Pfeifer GP. Rapid repair of UVA-induced oxidized purines and persistence of UVB-induced dipyrimidine lesions determine the mutagenicity of sunlight in mouse cells. FASEB J 2008; 22 : 2379–92. [Google Scholar]
  12. Hocker T, Tsao H. Ultraviolet radiation and melanoma: a systematic review and analysis of reported sequence variants. Hum Mutat 2007; 28 : 578–88. [Google Scholar]
  13. Besaratinia A, Pfeifer GP. Sunlight ultraviolet irradiation and BRAF V600 mutagenesis in human melanoma. Hum Mutat 2008; 29 : 983–91. [Google Scholar]
  14. Tommasi S, Denissenko MF, Pfeifer GP. Sunlight induces pyrimidine dimers preferentially at 5-methylcytosine bases. Cancer Res 1997; 57 : 4727–30. [Google Scholar]
  15. You YH, Pfeifer GP. Similarities in sunlight-induced mutational spectra of CpG-methylated transgenes and the p53 gene in skin cancer point to an important role of 5-methylcytosine residues in solar UV mutagenesis. J Mol Biol 2001; 305 : 389–99. [Google Scholar]
  16. Lemaire DG, Ruzsicska BP. Kinetic analysis of the deamination reactions of cyclobutane dimers of thymidylyl-3’,5’-2’-deoxycytidine and 2’-deoxycytidylyl-3’,5’-thymidine. Biochemistry 1993; 32 : 2525–33. [Google Scholar]
  17. Tu Y, Dammann R, Pfeifer GP. Sequence and time-dependent deamination of cytosine bases in UVB-induced cyclobutane pyrimidine dimers in vivo. J Mol Biol 1998; 284 : 297–311. [Google Scholar]
  18. Taylor JS. New structural and mechanistic insight into the A-rule and the instructional and non-instructional behavior of DNA photoproducts and other lesions. Mutat Res 2002; 510 : 55–70. [Google Scholar]
  19. Lee DH, Pfeifer GP. Deamination of 5-methylcytosines within cyclobutane pyrimidine dimers is an important component of UVB mutagenesis. J Biol Chem 2003; 278 : 10314–21. [Google Scholar]
  20. Gao S, Drouin R, Holmquist GP. DNA repair rates mapped along the human PGK1 gene at nucleotide resolution. Science 1994; 263 : 1438–40. [Google Scholar]
  21. Tornaletti S, Pfeifer GP. Slow repair of pyrimidine dimers at p53 mutation hotspots in skin cancer. Science 1994; 263 : 1436–8. [Google Scholar]
  22. Rodin SN, Rodin AS, Juhasz A, Holmquist GP. Cancerous hyper-mutagenesis in p53 genes is possibly associated with transcriptional bypass of DNA lesions. Mutat Res 2002; 510 : 153–68. [Google Scholar]
  23. Remontet L. Estimations nationales : tendance de l’incidence et de la mortalité par cancer en France entre 1978 et 2000. BEH 2003; 41-42 : 190–3. [Google Scholar]
  24. Hecht SS. Tobacco smoke carcinogens and lung cancer. J Natl Cancer Inst 1999; 91 : 1194–210. [Google Scholar]
  25. Devereux TR, Taylor JA, Barrett JC. Molecular mechanisms of lung cancer. Interaction of environmental and genetic factors. Giles F. Filley Lecture. Chest 1996; 109 : 14S-9S. [Google Scholar]
  26. Denissenko MF, Pao A, Tang M, Pfeifer GP. Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53. Science 1996; 274 : 430–2. [Google Scholar]
  27. Smith LE, Denissenko MF, Bennett WP, et al. Targeting of lung cancer mutational hotspots by polycyclic aromatic hydrocarbons. J Natl Cancer Inst 2000; 92 : 803–11. [Google Scholar]
  28. Denissenko MF, Pao A, Pfeifer GP, Tang M. Slow repair of bulky DNA adducts along the nontranscribed strand of the human p53 gene may explain the strand bias of transversion mutations in cancers. Oncogene 1998; 16 : 1241–7. [Google Scholar]
  29. Cloutier JF, Drouin R, Weinfeld M, et al. Characterization and mapping of DNA damage induced by reactive metabolites of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) at nucleotide resolution in human genomic DNA. J Mol Biol 2001; 313 : 539–57. [Google Scholar]
  30. Feng Z, Hu W, Hu Y, Tang MS. Acrolein is a major cigarette-related lung cancer agent: Preferential binding at p53 mutational hotspots and inhibition of DNA repair. Proc Natl Acad Sci USA 2006; 103 : 15404–9. [Google Scholar]
  31. Kim SI, Pfeifer GP, Besaratinia A. Lack of mutagenicity of acrolein-induced DNA adducts in mouse and human cells. Cancer Res 2007; 67 : 11640–7. [Google Scholar]
  32. Denissenko MF, Koudriakova TB, Smith L, et al. The p53 codon 249 mutational hotspot in hepatocellular carcinoma is not related to selective formation or persistence of aflatoxin B1 adducts. Oncogene 1998; 17 : 3007–14. [Google Scholar]
  33. Tu Y, Tornaletti S, Pfeifer GP. DNA repair domains within a human gene: selective repair of sequences near the transcription initiation site. EMBO J 1996; 15 : 675–83. [Google Scholar]
  34. Tu Y, Bates S, Pfeifer GP. Sequence-specific and domain-specific DNA repair in xeroderma pigmentosum and Cockayne syndrome cells. J Biol Chem 1997; 272 : 20747–55. [Google Scholar]
  35. Therrien JP, Drouin R, Baril C, Drobetsky EA. Human cells compromised for p53 function exhibit defective global and transcription-coupled nucleotide excision repair, whereas cells compromised for pRb function are defective only in global repair. Proc Natl Acad Sci USA 1999; 96 : 15038–43. [Google Scholar]
  36. Dalle S, Martin-Denavit T, Thomas L. Hypervariabilité génotypique des mélanomes : un défi thérapeutique. Med Sci (Paris) 2006; 22 : 178–82. [Google Scholar]
  37. Douki T, Leccia MT, Béani JC, et al. Effets néfastes du rayonnement UVA solaire : de nouveaux indices dans l’ADN. Med Sci (Paris) 2007; 23 : 124–6 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.