Accès gratuit
Numéro
Med Sci (Paris)
Volume 26, Numéro 2, Février 2010
Page(s) 185 - 192
Section M/S revues
DOI https://doi.org/10.1051/medsci/2010262185
Publié en ligne 15 février 2010
  1. Catros-Quemener V, Bouet F, Genetet N. Immunité antitumorale et thérapies cellulaires du cancer. Med Sci (Paris) 2003; 19 : 43–53. [Google Scholar]
  2. Dudley ME, Wunderlich JR, Yang JC, et al. Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol 2005; 23 : 2346–57. [Google Scholar]
  3. Hayday AC. Gamma-delta cells: a right time and a right place for a conserved third way of protection. Annu Rev Immunol 2000; 18 : 975–1026. [Google Scholar]
  4. Constant P, Davodeau F, Peyrat MA, et al. Stimulation of human gamma delta T cells by nonpeptidic mycobacterial ligands. Science 1994; 264 : 267–70. [Google Scholar]
  5. Gober HJ, Kistowska M, Angman L, et al. Human T cell receptor γδ cells recognize endogenous mevalonate metabolites in tumor cells. J Exp Med 2003; 197 : 163–8. [Google Scholar]
  6. Boedec A, Sicard H, Dessolin J, et al. Synthesis and biological activity of phosphonate analogues and geometric isomers of the highly potent phosphoantigen (E)-1-hydroxy- 2-methylbut-2-enyl 4-diphosphate. J Med Chem 2008; 51 : 1747–54. [Google Scholar]
  7. Bouet-Toussaint F, Cabillic F, Toutirais O, et al. Vγ9Vδ2 T cells-mediated recognition of human solid tumors. Potential for immunotherapy of hepatocellular and colorectal carcinomas. Cancer Immunol Immunother 2008; 57 : 531–9. [Google Scholar]
  8. Corvaisier M, Moreau-Aubry A, Diez E, et al. Vγ9Vδ2 T cell response to colon carcinoma cells. J Immunol 2005; 175 : 5481–8. [Google Scholar]
  9. Scotet E, Martinez LO, Grant E, et al. Tumor recognition following Vγ9Vδ2T cell receptor interactions with a surface F1-ATPase-related structure and apolipoprotein A-I. Immunity 2005; 22 : 71–80. [Google Scholar]
  10. Toutirais O, Cabillic F, Le Friec G, et al. DNAX accessory molecule-1 (CD226) promotes human hepatocellular carcinoma cell lysis by Vγ9Vδ2 T cells. Eur J Immunol 2009; 39 : 1361–8. [Google Scholar]
  11. Bonneville M, Scotet E. Human Vgamma9Vdelta2 T cells: promising new leads for immunotherapy of infections and tumors. Curr Opin Immunol 2006; 18 : 539–46. [Google Scholar]
  12. Gong G, Shao L, Wang Y, et al. Phosphoantigen-activated V gamma 2V delta 2 T cells antagonize IL-2-induced CD4+CD25+Foxp3+ T regulatory cells in mycobacterial infection. Blood 2009; 113 : 837–45. [Google Scholar]
  13. Salot S, Laplace C, Saiagh S, et al. Large scale expansion of gamma9delta2 T lymphocytes: Innacell gammadelta cell therapy product. J Immunol Methods 2007; 326 : 63–75. [Google Scholar]
  14. Viey E, Lucas C, Romagne F, et al. Chemokine receptors expression and migration potential of tumor-infiltrating and peripheral-expanded Vgamma9Vdelta2 T cells from renal cell carcinoma patients. J Immunother 2008; 31 : 313–23. [Google Scholar]
  15. Gertner-Dardenne J, Bonnafous C, Bezombes C, et al. Bromohydrin pyrophosphate enhances antibody-dependent cell-mediated cytotoxicity induced by therapeutic antibodies. Blood 2009; 113 : 4875–84. [Google Scholar]
  16. Zocchi MR, Ferrarini M, Rugarli C. Selective lysis of the autologous tumor by delta TCS1+ gamma/delta+ tumor-infiltrating lymphocytes from human lung carcinomas. Eur J Immunol 1990; 20 : 2685–9. [Google Scholar]
  17. Thomas ML, Samant UC, Deshpande RK, et al. γδT cells lyse autologous and allogenic oesophageal tumours : involvement of heat-shock proteins in the tumour cell lysis. Cancer Immunol Immunother 2000; 48 : 653–9. [Google Scholar]
  18. Viey E, Fromont G, Escudier B, et al. Phosphostim™ activated-γδ T cells kill autologous metastatic renal cell carcinoma. J Immunol 2005; 174 : 1338–47. [Google Scholar]
  19. Zheng BJ, Chan KW, IM S, et al. Anti-tumor effects of human peripheral γδ T cells in a mouse tumor model. Int J Cancer 2001; 92 : 421–5. [Google Scholar]
  20. Wilhem M, Kunzmann V, Eckstein S, et al. γδ T cells for immune therapy of patients with lymphoid malignancies. Blood 2003; 102 : 200–6. [Google Scholar]
  21. Dieli F, Vermijlen D, Fulfaro F, et al. Targeting human gammadelta T cells with zoledronate and interleukin-2 for immunotherapy of hormone-refractory prostate cancer. Cancer Res 2007; 67 : 7450–7. [Google Scholar]
  22. Kobayashi H, Tanaka Y, Yagi J, et al. Safety profile and anti-tumor effects of adoptive immunotherapy using gamma-delta T cells against advanced renal cell carcinoma: a pilot study. Cancer Immunol Immunother 2007; 56 : 469–76. [Google Scholar]
  23. Bennouna J, Bompas E, Neidhardt EM, et al. Phase-I study of Innacell gammadeltatrade mark, an autologous cell-therapy product highly enriched in gamma9delta2 T lymphocytes, in combination with IL-2, in patients with metastatic renal cell carcinoma. Cancer Immunol Immunother 2008; 57 : 1599–609. [Google Scholar]
  24. Banchereau J. Grandeur et servitude de l’immunologie humaine. Med Sci (Paris) 2008; 24 : 783–6. [Google Scholar]
  25. Li L, Wu CY. CD4+ CD25+ Treg cells inhibit human memory gammadelta T cells to produce IFN-gamma in response to M. tuberculosis antigen ESAT-6. Blood 2008; 111 : 5629–36. [Google Scholar]
  26. Sicard H, Ingoure S, Luciani B, et al. In vivo immunomanipulation of V gamma 9V delta 2 T cells with a synthetic phosphoantigen in a preclinical nonhuman primate model. J Immunol 2005; 175 : 5471–80. [Google Scholar]
  27. Thedrez A, Harly C, Morice A, et al. IL-21-mediated potentiation of antitumor cytolytic and proinflammatory responses of human Vgamma9Vdelta2 T cells for adoptive immunotherapy. J Immunol 2009; 182 : 3423–31. [Google Scholar]
  28. Thedrez A, Sabourin C, Gertner J, et al. Self/non-self discrimination by human gammadelta T cells: simple solutions for a complex issue ? Immunol Rev 2007; 215 : 123–35. [Google Scholar]
  29. Takahara M, Miyai M, Tomiyama M, et al. Copulsing tumor antigen-pulsed dendritic cells with zoledronate efficiently enhance the expansion of tumor antigen-specific CD8+ T cells via Vgamma9gammadelta T cell activation. J Leukoc Biol 2008; 83 : 742–54. [Google Scholar]
  30. Espinosa E, Tabiasco J, Hudrisier D, et al. Synaptic transfer by human gamma delta T cells stimulated with soluble or cellular antigens. J Immunol 2002; 168 : 6336–43. [Google Scholar]
  31. Caumartin J, Favier B, Daouya M, et al. Trogocytosis-based generation of suppressive NK cells. EMBO J 2007; 26 : 1423–33. [Google Scholar]
  32. Brandes M, Willimann K, Bioley G, et al. Cross-presenting human gammadelta T cells induce robust CD8+ alphabeta T cell responses. Proc Natl Acad Sci USA 2009; 106 : 2307–12. [Google Scholar]
  33. Zitvogel L, Apetoh L, Ghiringhelli F, et al. The anticancer immune response: indispensable for therapeutic success ? J Clin Invest 2008; 118 : 1991–2001. [Google Scholar]
  34. Chouaib S, El Hage F, Benlalam H, et al. Immunothérapie du cancer : espoirs et réalités. Med Sci (Paris) 2006; 22 : 755–9. [Google Scholar]
  35. Le Deist F, de Saint Basile G, Rieux-Laucat F, Hivroz C, Fischer A. Anomalies d’expression du complexe récepteur T de l’antigène CD3 et déficits immunitaires. Med Sci (Paris) 2007; 23 : 161–6. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.