Free Access
Issue |
Med Sci (Paris)
Volume 18, Number 12, Décembre 2002
|
|
---|---|---|
Page(s) | 1219 - 1226 | |
Section | M/S Revues : Articles de Synthèse | |
DOI | https://doi.org/10.1051/medsci/200218121219 | |
Published online | 20 October 2010 |
- Earnshaw WC, Bernat RL. Chromosomal passengers: toward an integrated view of mitosis. Chromosoma 1991; 100: 139–46. [Google Scholar]
- Wittmann T, Hyman A, Desai A. The spindle: a dynamic assembly of microtubules and motors. Nat Cell Biol 2001. 3: E28–34. [Google Scholar]
- Desai A, Mitchison TJ. Microtubule polymerization dynamics. Annu Rev Cell Dev Biol 1997; 13: 83–117. [Google Scholar]
- Le Peuch C, Dorée M. Le temps du cycle cellulaire. Med Sci 2000; 16: 461–8. [Google Scholar]
- Verde F, Labbé JC, Dorée M, Karsenti E. Regulation of microtubule dynamics by cdc2 protein kinase in cellfree extracts of Xenopus eggs. Nature 1990; 343: 233–8. [Google Scholar]
- Vasquez RJ, Gard DL, Cassimeris L. Phosphorylation by CDK1 regulates XMAP215 function in vitro. Cell Motil Cytoskeleton 1999; 43: 310–21. [Google Scholar]
- Karsenti E. Vers une description du mécanisme d’assemblage du fuseau mitotique à l’échelle moléculaire. Med Sci 1993; 9: 131–9. [Google Scholar]
- Nicklas RB, Gordon GW. The total length of spindle microtubules depends on the number of chromosomes present. J Cell Biol 1985; 100: 1–7. [Google Scholar]
- Zhang D, Nicklas RB. Chromosomes initiate spindle assembly upon experimental dissolution of the nuclear envelope in grasshopper spermatocytes. J Cell Biol 1995; 131: 1125–31. [Google Scholar]
- Sawin KE, Mitchison TJ. Mitotic spindle assembly by two different pathways in vitro. J Cell Biol 1991; 112: 925–40. [Google Scholar]
- Dogterom M, Felix MA, Guet CC, Leibler S. Influence of M-phase chromatin on the anisotropy of microtubule asters. J Cell Biol 1996; 133: 125–40. [Google Scholar]
- Karsenti E, Newport J, Kirschner M. Respective roles of centrosomes and chromatin in the conversion of microtubule arrays from interphase to metaphase. J Cell Biol 1984; 99: 47s–54. [Google Scholar]
- Heald R, Tournebize R, Blank T, et al. Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature 1996; 382: 420–5. [Google Scholar]
- Karsenti E. Mitotic spindle morphogenesis in animal cells. Semin Cell Biol 1991; 2: 251–60. [Google Scholar]
- Khodjakov A, Cole RW, Oakley BR, Rieder CL. Centrosome-independent mitotic spindle formation in vertebrates. Curr Biol 2000; 10: 59–67. [Google Scholar]
- Lawler S. Microtubule dynamics: if you need a shrink try stathmin/Op18. Curr Biol 1998; 8: R212–4. [Google Scholar]
- Andersen SS, Ashford AJ, Tournebize R, et al. Mitotic chromatin regulates phosphorylation of Stathmin/Op18. Nature 1997; 389: 640–3. [Google Scholar]
- Budde PP, Kumagi A, Dunphy WG, Heald R. Regulation of Op18 during spindle assembly in Xenopus egg extracts. J Cell Biol 2001; 153: 149–58. [Google Scholar]
- Carazo-Salas RE. Ran ou le parfum de la chromatine. Med Sci 2001; 17: 1056–60. [Google Scholar]
- Mattaj IW, Englmeier L. Nucleocytoplasmic transport: the soluble phase. Annu Rev Biochem 1998; 67: 265–306. [Google Scholar]
- Dorseuil O. Petite protéine G Ran et contrôle de l’import-export nucléaire. Med Sci 1998; 14: 85–9. [Google Scholar]
- Carazo-Salas RE, et al. Generation of GTP-bound Ran by RCC1 is required for chromatin-induced mitotic spindle formation. Nature 1999. 400: 178–81. [Google Scholar]
- Carazo-Salas RE, Guarguaglini G, Gruss OJ, et al. Ran-GTP coordinates regulation of microtubule nucleation and dynamics during mitotic-spindle assembly. Nat Cell Biol 2001; 3: 228–34. [Google Scholar]
- Guarguaglini G, Renzi L, D’Ottavio F, et al. Regulated Ran-binding protein 1 activity is required for organization and function of the mitotic spindle in mammalian cells in vivo. Cell Growth Differ 2000; 11: 455–65. [Google Scholar]
- Fleig, U, Salus SS, Karig I, Sazer S. The fission yeast ran GTPase is required for microtubule integrity. J Cell Biol 2000; 151: 1101–11. [Google Scholar]
- Endow SA. Microtubule motors in spindle and chromosome motility. Eur J Biochem 1999; 262: 12–8. [Google Scholar]
- Antonio C, Ferby I, Wilhelm H, et al. Xkid, a chromokinesin required for chromosome alignment on the metaphase plate. Cell 2000; 102: 425–35. [Google Scholar]
- Vernos I, Raats J, Hirano T, et al. Xklp1, a chromosomal Xenopus kinesin-like protein essential for spindle organization and chromosome positioning. Cell 1995; 81: 117–27. [Google Scholar]
- Theurkauf WE, Hawley RS. Meiotic spindle assembly in Drosophila females: behavior of nonexchange chromosomes and the effects of mutations in the nod kinesin-like protein. J Cell Biol 1992; 116: 1167–80. [Google Scholar]
- Bloom K. The centromere frontier: kinetochore components, microtubulebased motility, and the CENvalue paradox. Cell 1993; 73: 621–4. [Google Scholar]
- Nicklas RB, Kubai DF, Hays TS. Spindle microtubules and their mechanical associations after micromanipulation in anaphase. J Cell Biol 1982; 95: 91–104. [Google Scholar]
- Yao X., Abrieu A, Zheng Y, et al. CENP-E forms a link between attachment of spindle microtubules to kinetochores and the mitotic checkpoint. Nat Cell Biol 2000; 2: 484–91. [Google Scholar]
- McEwen BF, Chan GK, Zubrowski B, et al. CENP-E is essential for reliable bioriented spindle attachment, but chromosome alignment can be achieved via redundant mechanisms in mammalian cells. Mol Biol Cell 2001; 12: 2776–89. [Google Scholar]
- Cassimeris L, Salmon ED. Kinetochore microtubules shorten by loss of subunits at the kinetochores of prometaphase chromosomes. J Cell Sci 1991; 98: 151–8. [Google Scholar]
- Khodjakov A., Gabashvili IS, Rieder CL. « Dumb » versus « smart » kinetochore models for chromosome congression during mitosis in vertebrate somatic cells. Cell Motil Cytoskeleton 1999; 43: 179–85. [Google Scholar]
- Desai A, Maddox PS, Mitchison TJ, et al. Anaphase A chromosome movement and poleward spindle microtubule flux occur At similar rates in Xenopus extract spindles. J Cell Biol 1998; 141: 703–13. [Google Scholar]
- Kirschner M, Mitchison T. Beyond self-assembly: from microtubules to morphogenesis. Cell 1986; 45: 329–42. [Google Scholar]
- Dujardin D, Wacker UI, Moreau A, et al. Evidence for a role of CLIP-170 in the establishment of metaphase chromosome alignment. J Cell Biol 1998; 141: 849–62. [Google Scholar]
- Rieder CL, Alexander SP. Kinetochores are transported poleward along a single astral microtubule during chromosome attachment to the spindle in newt lung cells. J Cell Biol 1990; 110: 81–95. [Google Scholar]
- Wojcik E, Basto R, Serr M, et al. Kinetochore dynein: its dynamics and role in the transport of the Rough deal checkpoint protein. Nat Cell Biol 2001; 3: 1001–7. [Google Scholar]
- Schaar BT, Chan GK, Maddox R, et al. CENP-E function at kinetochores is essential for chromosome alignment. J Cell Biol 1997; 139: 1373–82. [Google Scholar]
- Lombillo VA, Stewart RJ, Mc Intosh JR, et al. Antibodies to the kinesin motor domain and CENP-E inhibit microtubule depolymerization-dependent motion of chromosomes in vitro. J Cell Biol 1995; 128: 107–15. [Google Scholar]
- Wordeman L, Mitchison TJ. Identification and partial characterization of mitotic centromere- associated kinesin, a kinesin-related protein that associates with centromeres during mitosis. J Cell Biol 1995; 128: 95–104. [Google Scholar]
- Walczak CE, Mitchison TJ, Desai A. XKCM1: a Xenopus kinesin-related protein that regulates microtubule dynamics during mitotic spindle assembly. Cell 1996; 84: 37–47. [Google Scholar]
- Maney T, Hunter AW, Wagenbach M, Wordeman L. Mitotic centromere associated kinesin is important for anaphase chromosome segregation. J Cell Biol 1998; 142: 787–801. [Google Scholar]
- Kalab P, Weis K, Heald R. Vizualisation of a Ran-GTP gradient in interphase and mitotic Xenopus egg extracts. Science 2002; 295: 2452–6. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.